Molecular dynamic simulation of Copper and Platinum nanoparticles Poiseuille flow in a nanochannels

Davood Toghraie1, Majid Mokhtari2, Masoud Afrand3
1Department of Mechanical Engineering, Khomeinishahr Branch, Islamic Azad University, Khomeinishahr, Iran
2Department of Energy Engineering, Graduate School of Environment and Energy, Science and Research Branch, Islamic Azad University, Tehran, Iran
3Department of Mechanical Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran

Tóm tắt

Từ khóa


Tài liệu tham khảo

Afrand, 2016, Effects of temperature and solid volume fraction on viscosity of SiO2-MWCNTs/SAE40 hybrid nanofluid as a coolant and lubricant in heat engines, Appl. Therm. Eng., 102, 45, 10.1016/j.applthermaleng.2016.04.002

Afrand, 2016, Effects of temperature and nanoparticles concentration on rheological behavior of Fe3O4–Ag/EG hybrid nanofluid: an experimental study, Exp. Therm. Fluid Sci., 77, 38, 10.1016/j.expthermflusci.2016.04.007

Eshgarf, 2016, An experimental study on rheological behavior of non-Newtonian hybrid nano-coolant for application in cooling and heating systems, Exp. Therm. Fluid Sci., 76, 221, 10.1016/j.expthermflusci.2016.03.015

Hemmat Esfe, 2016, Estimation of thermal conductivity of Al2O3/Water (40%)–ethylene glycol (60%) by artificial neural network and correlation using experimental data, Int. Commun. Heat Mass Transf., 74, 125, 10.1016/j.icheatmasstransfer.2016.02.002

Baratpour, 2016, Effects of temperature and concentration on the viscosity of nanofluids made of single-wall carbon nanotubes in ethylene glycol, Int. Commun. Heat Mass Transf., 74, 108, 10.1016/j.icheatmasstransfer.2016.02.008

M. Soltanimehr, M. Afrand, Thermal conductivity enhancement of COOH-functionalized MWCNTs/ethylene glycol–water nanofluid for application in heating and cooling systems, Applied Thermal Engineering. doi: http://dx.doi.org/10.1016/j.applthermaleng.2016.03.089.

Toghraie, 2016, Measurement of thermal conductivity of ZnO–TiO2/EG hybrid nanofluid, J. Therm. Anal. Calorim., 1

Xue, 2004, Effect of liquid layering at the liquid–solid interface on thermal transport, Int. J. Heat Mass Transf., 47, 4277, 10.1016/j.ijheatmasstransfer.2004.05.016

Xue, 2003, Two regimes of thermal resistance at a liquid–solid interface, J. Chem. Phys., 118, 337, 10.1063/1.1525806

Li, 2008, An investigation of molecular layering at the liquid–solid interface in nanofluids by molecular dynamics simulation, Phys. Lett. A, 372, 4541, 10.1016/j.physleta.2008.04.046

Lu, 2008, Study for the particle's scale effect on some thermal physical properties of nanofluids by a simplified molecular dynamics method, EABE (Innov. Numer. Methods MicroNano Mech. Struct.), 32, 282

Lv, 2011, Molecular dynamics simulation on flow behavior of nanofluids between fat plates under shear flow condition, microfluidics and nanofluids between flat plates under shear flow condition, Microfluid. Nanofluid., 10, 475, 10.1007/s10404-010-0684-2

Sun, 2011, Molecular dynamics simulation of nanofluid's effective thermal conductivity in high shear-rate Couette flow, Int. J. Heat Mass Transf., 54, 2560, 10.1016/j.ijheatmasstransfer.2011.02.005

Sun, 2011, Anomalous enhancement in thermal conductivity of nanofluid induced by solid walls in a nanochannel, Appl. Therm. Eng., 17, 3799, 10.1016/j.applthermaleng.2011.07.021

Kang, 2011, Molecular dynamics simulation of thermal conductivity of Cu–Ar nanofluid using EAM potential for Cu–Cu interactions, Appl. Phys. A, 103, 1001, 10.1007/s00339-011-6379-z

Maroo, 2010, A novel fluid–wall heat transfer model for molecular dynamics simulations, J. Nanopart. Res., 12, 1913, 10.1007/s11051-009-9755-2

Maroo, 2008, Molecular dynamic simulation of Platinum heater and associated nano-scale liquid Argon film evaporation and colloidal adsorption characteristics, J. Colloid Interface Sci., 328, 134, 10.1016/j.jcis.2008.09.018

Chun-Yang, 2009, Simulation of liquid argon flow along a nanochannel: effect of applied force, Chin. J. Chem. Eng., 17, 734, 10.1016/S1004-9541(08)60269-4

Evans, 1983, Nonequilibrium molecular dynamics via Gauss’s principle of least constraint, Phys. Rev. A, 28, 1016, 10.1103/PhysRevA.28.1016

Xu, 2004, Molecular dynamics simulation of liquid argon flow at platinum surfaces, Heat Mass Transf., 40, 859, 10.1007/s00231-003-0483-3

Semironi, 2010, Molecular dynamics simulation of liquid–vapor phase equilibrium by using the modified Lennard–Jones potential function, Heat Mass Transf., 46, 287, 10.1007/s00231-009-0566-x

Semiromi, 2010, Nanoscale Poiseuille flow and effects of modified Lennard–Jones potential function, Heat Mass Transf., 46, 791, 10.1007/s00231-010-0624-4

Semiromi, 2011, Molecular dynamics simulation of nonodroplets with the modified Lennard–Jones potential function, Heat Mass Transf., 47, 579, 10.1007/s00231-010-0747-7

Semiromi, 2012, Molecular dynamics simulation of annular flow boiling with the modified Lennard–Jones potential function, Heat Mass Transf., 48, 141, 10.1007/s00231-011-0855-z

Noorian, 2014, Molecular dynamics simulation of Poiseuille flow in a rough nano channel with checker surface roughnesses geometry, Heat Mass Transf., 50, 105, 10.1007/s00231-013-1232-x

Rezaei, 2015, The surface charge density effect on the electro-osmotic flow in a nanochannel: a molecular dynamics study, Heat Mass Transf., 51, 661, 10.1007/s00231-014-1441-y

Noorian, 2014, The effects of surface roughness geometry of flow undergoing Poiseuille flow by molecular dynamics simulation, Heat Mass Transf., 50, 95, 10.1007/s00231-013-1231-y

Toghraie, 2009, Molecular Dynamics Simulation of Liquid-Vapor Interface on the Solid Surface Using the GEAR'S Algorithm, WASET., 57, 122

Rezaei, 2015, Molecular dynamics study of an electro–kinetic fluid transport in a charged nanochannel based on the role of the stern layer, Phys. A: Stat. Mech. Appl., 426, 25, 10.1016/j.physa.2015.01.043