Phát hiện và xác định vi khuẩn kỵ khí bằng phương pháp phân tử

Naoki Kato1, Haru Kato1
1Institute of Anaerobic Bacteria, Gifu University School of Medicine, Gifu, Japan

Tóm tắt

Vi khuẩn kỵ khí là những sinh vật bị inactivate khi tiếp xúc với không khí, và một số loài phát triển rất chậm. Do đó, chúng là những ứng viên tốt cho việc phát hiện trực tiếp và xác nhận nuôi cấy thông qua các kỹ thuật chẩn đoán phân tử. Trong các loài vi khuẩn clostridia, các kỹ thuật khuếch đại chuỗi polymerase (PCR) đã được sử dụng để chứng minh một đoạn gen mã hóa cho neurotoxins, enterotoxins hoặc cytotoxins. Sử dụng các kỹ thuật này, các chủng Clostridium botulinum đã được tách trực tiếp và phân loại độc tố từ các mẫu thực phẩm. Các chủng Clostridium tetani đã được xác định, và các chủng Clostridium difficile sản sinh độc tố cùng với các chủng Clostridium perfringens sản sinh enterotoxin đã được xác nhận trong các nghiên cứu nuôi cấy hoặc được phát hiện trực tiếp từ mẫu phân hoặc thực phẩm. Trong số các vi khuẩn kỵ khí không clostridia, Propionibacterium acnes, Mobiluncus, các tác nhân gây bệnh định kỳ gram âm bao gồm Porphyromonas gingivalis, Prevotella intermedia, Prevotella nigrescens, Bacteroides forsythus, Bacterioides fragilis và B. fragilis sản sinh enterotoxin, Fusobacterium prausnitzii (một thành phần phổ biến của hệ vi sinh vật phân), và Bilophila wadsworthia đã được nghiên cứu ở mức độ phân tử bằng cách sử dụng các probe oligonucleotide và phương pháp PCR. Các mồi PCR phổ quát có thể là lựa chọn cho việc phân biệt các vi khuẩn kỵ khí thường gặp trong các nhiễm trùng đa vi sinh và công nghệ khuếch đại axit nucleic định lượng đã được sử dụng rộng rãi trong những tình huống này. Tuy nhiên, một số nghiên cứu thiếu một số lượng đủ các chủng vi khuẩn đã được kiểm tra để đánh giá độ tin cậy của các phương pháp phân tử này. Việc tích lũy thêm dữ liệu sử dụng các kỹ thuật này là rất quan trọng cho việc sử dụng rộng rãi của chúng hoặc để ước lượng các giới hạn của chúng.

Từ khóa

#vi khuẩn kỵ khí #Clostridium #phát hiện phân tử #PCR

Tài liệu tham khảo

Finegold SM, George WL (eds). Anaerobic infections in humans. San Diego: Academic Press, 1989. Engelkirk PG, Duben-Engelkirk J, Dowell VR Jr (eds). Principles and practice of clinical anaerobic bacteriology. Belmont: Star Publishing, 1992. Summanen P, Baron EJ, Citron D, Strong C, Wexler HM, Finegold SM (eds). Wadsworth anaerobic bacteriology manual. 5th ed. Belmont: Star Publishing, 1993. Hatheway CL. Toxigenic clostridia. Clin Microbiol Rev 1990;3:66–98. Persing DH. In vitro nucleic acid amplification techniques. In: Persing DH, Smith TF, Tenover FC, White TJ (eds) Diagnostic molecular microbiology: principles and applications. Washington, DC: American Society for Microbiology, 1993:51–87. Kato N, Ou CY, Kato H, Bartley SL, Luo CC, Killgore GE, et al. Detection of toxigenicClostridium difficile in stool specimens by the polymerase chain reaction. J Infect Dis 1993;167:455–458. Hatheway CL. Botulism. In: Balows A, Hausler WJ Jr, Ohashi M, Turano A (eds) Laboratory diagnosis of infectious diseases: principles and practice. New York Springer-Verlag, 1988:111–133. Suen JC, Hatheway CL, Steigerwalt AG, Brenner DJ.Clostridium argentinense sp. nov.: a genetically homogeneous group composed of all strains ofClostridium botulinum toxin type G and some nontoxigenic strains previously identified asClostridium subterminale orClostridium hastiforme. Int J Syst Bacteriol 1988;38:375–381. Doellgast GJ, Beard GA, Bottoms JD, Cheng T, Roh BH, Roman MG, et al. Enzyme-linked immunosorbent assay and enzyme-linked coagulation assay for detection ofClostridium botulinum neurotoxins A, B, and E and solution-phase complexes with dual-label antibodies. J Clin Microbiol 1994;32:105–111. Szabo EA, Pemberton JM, Desmarchelier PM. Specific detection ofClostridium botulinum type B by using the polymerase chain reaction. Appl Environ Microbiol 1992;58:418–420. Kato N, Kato H, Watanabe K, Kobayashi T, Ueno K. Identification of the neurotoxin genes of neurotoxin-producingClostridium tetani andClostridium botulinum. J Jpn Soc Clin Microbiol 1993;3:104–109 (in Japanese). Szabo EA, Pemberton JM, Desmarchelier PM. Detection of the genes encoding botulinum neurotoxin types A to E by the polymerase chain reaction. Appl Environ Microbiol 1993;59:3011–3020. Fach P, Guillou JP. Detection by in vitro amplification of the alpha-toxin (phospholipase C) gene fromClostridium perfringens. J Appl Bacteriol 1993;74:61–66. Campbell KD, Collins MD, East AK. Gene probes for identification of the botulinal neurotoxin gene and specific identification of neurotoxin types B, E, and F. J Clin Microbiol 1993;31:2255–2262. Ferreira JL, Hamdy MK, McCay SG, Hamphill M, Kirma N, Baumstark BR. Detection ofClostridium botulinum type F using the polymerase chain reaction. Mol Cell Probe 1994;8:365–373. Franciosa G, Ferreira JL, Hatheway CL. Detection of type A, B, and E botulism neurotoxin genes inClostridium botulinum and otherClostridium species by PCR: evidence of unexpressed type B toxin genes in type A toxigenic organisms. J Clin Microbiol 1994;32:1911–1917. Fach P, Gibert M, Griffais R, Guillou JP, Popoff MR. PCR and gene probe identification of botulinum neurotoxin A-, B-, E-, F-, and G-producingClostridium spp. and evaluation in food samples. Appl Environ Microbiol 1995;61:389–392. Takeshi K, Fujinaga Y, Inoue K, Nakajima H, Oguma K, Ueno T, et al. Simple method for detection ofClostridium botulinum type A to F neurotoxin genes by polymerase chain reaction. Microbiol Immunol 1996;40:5–11. Hutson RA, Zhou Y, Collins MD, Johnson EA, Hatheway CL, Sugiyama H. Genetic characterization ofClostridium botulinum type A containing silent type B neurotoxin gene sequences. J Biol Chem 1996;271:10786–10792. Collins MD, Lawson PA, Willems A, Cordoba JJ, Fernandez-Garayzabal J, Garcia P, et al. The phylogeny of the genusClostridium: proposal of five new genera and eleven new species combinations. Int J Syst Bacteriol 1994;44:812–826. McFarland LV, Mulligan ME, Kwok RY, Stamm WE. Nosocomial acquisition ofClostridium difficile infection. N Engl J Med 1989;320:204–210. Lyerly DM, Krivan HC, Wilkins TD.Clostridium difficile: its disease and toxins. Clin Microbiol Rev 1988;1:1–18. Gumerlock PH, Tang YJ, Meyers FJ, Silva J Jr. Use of the polymerase chain reaction for the specific and direct detection ofClostridium difficile in human feces. Rev Infect Dis 1991;13:1053–1060. Lyerly DM. Clostridia and Bacteroides in enteric infections. In: Paradise LJ (ed) Enteric infections and immunity. New York: Plenum Press, 1996. Wilson KH, Blitchington R, Hindenach B, Greene RC. Species-specific oligonucleotide probes for rRNA ofClostridium difficile and related species. J Clin Microbiol 1988;26:2484–2488. Wren BW, Clayton CL, Castledine NB, Tabaqchali S. Identification of toxigenicClostridium difficile strains by using a toxin A gene-specific probe. J Clin Microbiol 1990;28:1808–1812. Kato N, Ou CY, Kato H, Bartley SL, Brown VK, Dowell VR Jr, et al. Identification of toxigenicClostridium difficile by the polymerase chain reaction. J Clin Microbiol 1991;29:33–37. McMillin DE, Muldrow LL, Laggette SJ. Simultaneous detection of toxin A and toxin B genetic determinants ofClostridium difficile using the multiplex polymerase chain reaction. Can J Microbiol 1992;38:81–83. Wren BW, Heard SR, al-Saleh AI, Tabaqchali S. Characterisation ofClostridium difficile strains by polymerase chain reaction with toxin A- and B-specific primers. J Med Microbiol 1993;38:109–113. Gumerlock PH, Tang YJ, Weiss JB, Silva J Jr. Specific detection of toxigenic strains ofClostridium difficile in stool specimens. J Clin Microbiol 1993;31:507–511. Knudsen JD, Tvede M. Demonstration of toxin A and B by polymerase chain reaction and McCoy cell assay in clinical isolates ofClostridium difficile from Denmark. Apmis 1993;101:18–22. Tang YJ, Gumerlock PH, Weiss JB, Silva J Jr. Specific detection ofClostridium difficile toxin A gene sequences in clinical isolates. Mol Cell Probe 1994;8:463–467. Wolfhagen MJ, Fluit AC, Torensma R, Poppelier MJ, Verhoef J. Rapid detection of toxigenicClostridium difficile in fecal samples by magnetic immuno PCR assay. J Clin Microbiol 1994;32:1629–1633. Greenfield L, White TJ. Sample preparation methods. In: Persing DH, Smith TF, Tenover FC, White TJ (eds) Diagnostic molecular microbiology: principles and applications. Washington, DC: American Society for Microbiology, 1993:122–137. Kato H, Kato N, Watanabe K. Toxin B-positive, toxin A-negativeClostridium difficile strains show different PCR for the 3′ end portion of the toxin A gene from toxigenic strains. In 7th International Congress for Infectious Diseases Hong Kong, 1996, (abstr 21.008, p 45). Wang RF, Cao WW, Franklin W, Campbell W, Cerniglia CE. A 16S rDNA-based PCR method for rapid and specific detection ofClostridium perfringens in food. Mol Cell Probe 1994;8:131–137. Van Damme-Jongsten M, Rodhouse J, Gilbert RJ, Notermans S. Synthetic DNA probes for detection of enterotoxigenicClostridium perfringens strains isolated from outbreaks of food poisoning. J Clin Microbiol 1990;28: 131–133. Saito M, Matsumoto M, Funabashi M. Detection ofClostridium perfringens enterotoxin gene by the polymerase chain reaction amplification procedure. Int J Food Microbiol 1992;17:47–55. Kato N, Kim SM, Kato H, Tanaka K, Watanabe K, Ueno K, et al. Identification of enterotoxin-producingClostridium perfringens by the polymerase chain reaction. Jpn J Infect 1993;67:724–729 (in Japanese). Hykin PG, Tobal K, McIntyre G, Matheson MM, Towler HM, Lightman SL. The diagnosis of delayed post-operative endophthalmitis by polymerase chain reaction of bacterial DNA in vitreous samples. J Med Microbiol 1994;40:408–415. Greisen K, Loeffelholz M, Purohit A, Leong D. PCR primers and probes for the 16S rRNA gene of most species of pathogenic bacteria, including bacteria found in cerebrospinal fluid. J Clin Microbiol 1994;32:335–351. Hill GB. The microbiology of bacterial vaginosis. Am J Obstet Gynecol 1993;169:450–454. Spiegel CA. The genusMobiluncus. In: Balows A, Truper HG, Dworkin M, Harder W, Schleifer K-H (eds) The prokaryotes. 2nd ed. Chapter 39. New York: Springer-Verlag, 1992:906–917. Pahlson C, Mattsson JG, Larsson PG, Gersdorf H, Gobel UB, Forsum U, et al. Detection and identification ofMobiluncus species by direct filter hybridization with an oligonucleotide probe complementary to rRNA. Apmis 1992;100:655–662. Tiveljung A, Backstrom J, Forsum U, Monstein HJ. Broad-range PCR amplification and DNA sequence analysis reveals variable motifs in 16S rRNA genes ofMobiluncus species. Apmis 1995;103:755–763. Murray PR. Oral microbiology. In: Murray PR, Drew WL, Kobayashi GS, Thompson JH Jr (eds) Medical microbiology. Chapter 27 St. Louis: CV Mosby, 1990:279–293. Tanner A, Stillman N. Oral and dental infections with anaerobic bacteria: clinical features, predominant pathogens, and treatment. Clin Infect Dis 1993;16(suppl):S304-S309. Dix K, Watanabe SM, McArdle S, Lee DI, Randolph C, Moncla B, et al. Species-specific oligodeoxynucleotide probes for the identification of periodontal bacteria. J Clin Microbiol 1990;28:319–323. Gersdorf H, Meissner A, Pelz K, Krekeler G, Gobel UB. Identification ofBacteroides forsythus in subgingival plaque from patients with advanced periodontitis. J Clin Microbiol 1993;31:941–946. Gersdorf H, Pelz K, Gobel UB. Fluorescence in situ hybridization for direct visualization of gram-negative anaerobes in subgingival plaque samples. FEMS Immunol Med Microbiol 1993;6:109–114. Watanabe K, Frommel TO. Detection ofPorphyromonas gingivalis in oral plaque samples by use of the polymerase chain reaction. J Dent Res 1993;72:1040–1044. Leys EJ, Griffen AL, Strong SJ, Fuerst PA. Detection and strain identification ofActinobacillus actinomycetemcomitans by nested PCR. J Clin Microbiol 1994;32:1288–1294. Benkirane RM, Guillot E, Mouton C. Immunomagnetic PCR and DNA probe for detection and identification ofPorphyromonas gingivalis. J Clin Microbiol 1995;33:2908–2912. Hiratsuka K, Yoshida W, Hayakawa M, Takiguchi H, Abiko Y. Polymerase chain reaction and an outer membrane protein gene probe for the detection ofPorphyromonas gingivalis. FEMS Microbiol Lett 1996;138:167–172. Fujise O, Hamachi T, Hirofuji T, Maeda K. Colorimetric microtiter plate based assay for detection and quantification of amplifiedActinobacillus actinomycetemcomitans DNA. Oral Microbiol Immunol 1995;10:372–377. Wahlfors J, Meurman JH, Vaisanen P, Alakuijala P, Korhonen A, Torkko H, et al. Simultaneous detection ofActinobacillus actinomycetemcomitans andPorphyromonas gingivalis by a rapid PCR method. J Dent Res 1995;74: 1796–1801. Slots J, Ashimoto A, Flynn MJ, Li G, Chen C. Detection of putative periodontal pathogens in subgingival specimens by 16S ribosomal DNA amplification with the polymerase chain reaction. Clin Infect Dis 1995;20(suppl): S304-S307. Yamashita Y, Kohno S, Koga H, Tomono K, Kaku M. Detection ofBacteroides fragilis in clinical specimens by PCR. J Clin Microbiol 1994;32:679–683. Jotwani R, Kato N, Kato H, Watanabe K, Ueno K. Detection ofBacteroides fragilis in clinical specimens by polymerase chain reaction amplification of the neuraminidase gene. Curr Microbiol 1995;31:215–219. Myers LL, Shoop DS, Stackhouse LL, Newman FS, Flaherty RJ, Letson GW, et al. Isolation of enterotoxigenicBacteroides fragilis from humans with diarrhea. J Clin Microbiol 1987;25:2330–2333. Sack RB, Albert MJ, Alam K, Neogi PK, Akbar MS. Isolation of enterotoxigenicBacteroides fragilis from Bangladeshi children with diarrhea: a controlled study. J Clin Microbiol 1994;32:960–963. San Joaquin VH, Griffis JC, Lee C, Sears CL. Association ofBacteroides fragilis with childhood diarrhea. Scand J Infect Dis 1995;27:211–215. Kato N, Kato H, Watanabe K, Ueno K. Association of enterotoxigenicBacteroides fragilis with bacteremia. Clin Infect Dis 1996;23(suppl 1):S83-S86. Wang RF, Cao WW, Cerniglia CE. Phylogenetic analysis ofFusobacterium prausnitzii based upon the 16S rRNA gene sequence and PCR confirmation. Int J Syst Bacteriol 1996;46:341–343. Baron EJ, Summanen P, Downes J, Roberts MC, Wexler H, Finegold SM.Bilophila wadsworthia, gen. nov. and sp. nov., a unique gram-negative anaerobic rod recovered from appendicitis specimens and human faeces. J Gen Microbiol 1989;135:3405–3411. Finegold S, Summanen P, Gerardo SH, Baron E. Clinical importance ofBilophila wadsworthia. Eur J Clin Microbiol Infect Dis 1992;11:1058–1063. Sapico FL, Reeves D, Wexler HM, Duncan J, Wilson KH, Finegold SM. Preliminary study using species-specific oligonucleotide probe for rRNA ofBilophila wadsworthia. J Clin Microbiol 1994;32:2510–2513. Bottger EC. Approaches for identification of microorganisms. ASM News 1996;62:247–250.