Molecular design of functional polymer surfaces

Journal of Polymer Science, Part B: Polymer Physics - Tập 42 Số 16 - Trang 2942-2956 - 2004
Jeffrey T. Koberstein1
1Department of Chemical Engineering, Columbia University, MC4721, 500 West 120th Street, New York, New York 10027

Tóm tắt

AbstractThree design principles are presented that allow for the molecular design of functional polymer surfaces: surface segregation, surface structure, and surface reorganization. These design principles are illustrated by a description of the behavior of model end‐functional polymers that accurately reflect the general behavior of essentially all possible linear functional polymer architectures. Several applications of the design principles are described to show how they may be used to provide molecular engineering solutions for problems of practical interest. The applications include the optimization of functional polymer architectures for producing adhesive and release surfaces, the suppression of dewetting by the use of functional additives to lower the surface tension of a coating, and the creation of smart polymer surfaces with selective adhesion properties. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 2942–2956, 2004

Từ khóa


Tài liệu tham khảo

This review does not specifically deal with the effects of charged surfaces or the air–water interface for which the design of a release surface involves more complex concepts such as charge repulsion and bound water.

10.1021/ma020463k

10.1021/ma9903456

Wu S., 1982, Polymer Interface and Adhesion

Garbassi F., 1999, Polymer Surfaces: From Physics to Technology

10.1083/jcb.114.5.1089

Johnson T. D., 1999, Mol Biol Cell, 10, 225, 10.1091/mbc.10.1.225

Wu S., 1982, Polymer Interface and Adhesion

Ratner B. D., 1984, Surface and Interfacial Aspects of Biomedical Polymers

10.1142/9789812813510_0004

Koberstein J. T., 2001, Encyclopedia of Polymer Science and Technology

10.1017/CBO9780511623196

10.1063/1.335858

10.1021/ma00185a049

10.1021/ma00064a012

10.1021/ma00070a020

10.1021/ma00084a047

10.1021/ma9510810

10.1016/S0032-3861(03)00391-4

10.1021/ma00097a013

Simulations with the lattice model predict that the effect of asec‐butyl end group on the properties of fluorosilane‐terminated PS are not appreciable.

10.1021/ma00087a008

10.1016/0079-6786(76)90013-3

10.1016/S0001-8686(01)00051-3

10.1021/ma021623v

10.1021/ma00183a037

10.1021/ma00183a038

10.1021/j100475a012

10.1021/ma00017a030

Weast R. C., 1975, Handbook of Chemistry and Physics

Hildebrand J. H., 1950, Solubility of Non‐Electrolytes

10.1002/app.1975.070190423

10.1021/ma960224v

10.1021/ma011969q

Smith D. A.Ph.D. Dissertation University of Connecticut 2001.

Wong D.Ph.D. Dissertation University of Connecticut 2004.

10.1021/bk-1976-0031.ch019

10.1557/S0883769400035090

Jalbert C. A.Ph.D. Dissertation University of Connecticut 1993.

O'Rourke‐Muisener P. A. V.;Jalbert C. A.;Wong D.;Koberstein J. T.To be submitted for publication.

Lofting H., 1952, Doctor Dolittle's Circus

10.1021/ma00119a007

(b)Hu W.Ph.D. Dissertation University of Connecticut 1993.

10.1021/ma00154a051

10.1021/ma980774o

10.1021/ma9500392

10.1088/0953-8984/9/37/008

Cho D.Ph.D. Dissertation University of Connecticut 2002.

10.1080/00218469808009967

Hu W.;Brown H. R.;Koberstein J. T.;Bhatia R.;Lingelser J.‐P.;Gallot Y.C R Chim Acad Sci Paris submitted for publication 2004.

10.1080/00218460490276858

Wang P.;Pan F.;Koberstein J. T.Langmuir submitted for publication 2004.

10.1021/ma981699k

Cho D.;Erkey C.;Koberstein J. T.Macromolecules submitted for publication 2004.