Molecular data confirm Triatoma pallidipennis Stål, 1872 (Hemiptera: Reduviidae: Triatominae) as a novel cryptic species complex
Tài liệu tham khảo
Abad-Franch, 2005, Molecular research and the control of Chagas disease vectors, Anais Acad. Bras. Ciênc., 77, 437, 10.1590/S0001-37652005000300007
Agapow, 2004, The impact of species concept on biodiversity studies, Q. Rev. Biol., 79, 161, 10.1086/383542
Alevi, 2012, Karyotype of Triatoma melanocephala Neiva & Pinto (1923). Does this species fit in the Brasiliensis subcomplex?, Infect. Genet. Evol., 12, 1652, 10.1016/j.meegid.2012.06.011
Alevi, 2017, Triatoma vitticeps subcomplex (Hemiptera, Reduviidae, Triatominae): a new grouping of Chagas disease vectors from South America, Parasites Vectors, 10, 180, 10.1186/s13071-017-2129-1
Alevi, 2017, Mitochondrial gene confirms the specific status of Triatoma pintodiasi jurberg, cunha, and rocha, 2013 (Hemiptera, Triatominae), an endemic species in Brazil, Am. J. Trop. Med. Hyg., 96, 200, 10.4269/ajtmh.16-0586
Alevi, 2018, Triatoma vitticeps (Stal, 1859) (Hemiptera, Triatominae): a Chagas disease vector or a complex of vectors?, Am. J. Trop. Med. Hyg., 99, 954, 10.4269/ajtmh.17-0512
Alevi, 2020, Triatoma rosai sp. Nov. (Hemiptera, Triatominae): a new species of Argentinian Chagas disease vector described based on integrative taxonomy, Insects, 11, 830, 10.3390/insects11120830
Alevi, 2021, Trends in taxonomy of Chagas disease vectors (Hemiptera, Reduviidae, Triatominae): from linnaean to integrative taxonomy, Pathogens, 10, 1627, 10.3390/pathogens10121627
Arbogast, 2002, Estimating divergence times from molecular data on phylogenetic and population genetic timescales, Annu. Rev. Ecol. Syst., 33, 707, 10.1146/annurev.ecolsys.33.010802.150500
Argues, 2000, Nuclear rDNA-based molecular clock of the evolution of Triatominae (Hemiptera: Reduviidae), vectors of Chagas disease, Mem. Inst. Oswaldo Cruz, 95, 567, 10.1590/S0074-02762000000400020
Bargues, 2008, Phylogeography and genetic variation of Triatoma dimidiata, the main Chagas disease vector in central America, and its position within the genus Triatoma, PLoS Negl. Trop. Dis., 2, e233, 10.1371/journal.pntd.0000233
Benedetto, 2012
Brown, 2017, SDMtoolbox 2.0: the next generation python-based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses, PeerJ, 5, e4095, 10.7717/peerj.4095
Burmeister, 1835, 2, 1
Bustamante, 2004, Metric variation among geographic populations of the Chagas vector Triatoma dimidiata (Hemiptera: Reduviidae: Triatominae) and related species, J. Med. Entomol., 41, 296, 10.1603/0022-2585-41.3.296
Caldecott, 1996, Priorities for conserving global species richness and endemism, Biodivers. Conserv., 5, 699, 10.1007/BF00051782
Cardoso, 2009, Morphological and molecular variation in tiger beetles of the cicindela hybrida complex: is an 'integrative taxonomy' possible?, Mol. Ecol., 18, 648, 10.1111/j.1365-294X.2008.04048.x
Carstens, 2013, How to fail at species delimitation, Mol. Ecol., 22, 4369, 10.1111/mec.12413
Cassens, 2003, The phylogeography of dusky dolphins (lagenorhynchus obscurus): a critical examination of network methods and rooting procedures, Mol. Ecol., 12, 1781, 10.1046/j.1365-294X.2003.01876.x
Cesaretto, 2021, Trends in taxonomy of triatomini (Hemiptera, Reduviidae, Triatominae): reproductive compatibility reinforces the synonymization of meccus Stål, 1859 with Triatoma laporte, 1832, Parasites Vectors, 14, 340, 10.1186/s13071-021-04847-7
Chan, 2014, Integrating statistical genetic and geospatial methods brings new power to phylogeography, Mol. Phylogenet. Evol., 59, 523, 10.1016/j.ympev.2011.01.020
Clapperton, 1993, Nature of environmental changes in South America at the last glacial maximum, Palaeogeogr. Palaeoclimatol. Palaeoecol., 101, 189, 10.1016/0031-0182(93)90012-8
Cortés-Jiménez, 1996, Frequency of triatomines infected with trypanosoma cruzi collected in cuernavaca city, Morelos, Mexico, Rev. Latinoam. Microbiol., 38, 115
Cracraft, 1989, Speciation and its ontology: the empirical consequences of alternative species concepts for understanding patterns and processes of differentiation, Speciat. Conseq., 28, 59
Cruz, 2020, An improved and low-cost protocol for high-quality DNA isolation for the Chagas disease vectors, Infect. Genet. Evol., 80, 10.1016/j.meegid.2020.104201
De Queiroz, 2007, Species concepts and species delimitation, Syst. Biol., 56, 879, 10.1080/10635150701701083
De Queiroz, 1990, Phylogenetic systematics or Nelson’s version of cladistics?, Cladistics, 6, 61, 10.1111/j.1096-0031.1990.tb00525.x
Dorn, 2018, Description of Triatoma mopan sp. n. from a cave in belize (Hemiptera, Reduviidae, Triatominae), Zookeys, 69, 10.3897/zookeys.775.22553
Dotson, 2001, Sequence and organization of the mitochondrial genome of the Chagas disease vector, Triatoma dimidiata, Insect Mol. Biol., 10, 205, 10.1046/j.1365-2583.2001.00258.x
Drummond, 2012, Bayesian phylogenetics with BEAUti and the BEAST 1.7, Mol. Biol. Evol., 29, 1969, 10.1093/molbev/mss075
Edgar, 2004, MUSCLE: multiple sequence alignment with high accuracy and high throughput, Nucl. Acids Res., 32, 1792, 10.1093/nar/gkh340
2011
Excoffier, 2010, Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under linux and windows, Mol. Ecol. Resour., 10, 564, 10.1111/j.1755-0998.2010.02847.x
Fetzner, 1999, Extracting high-quality DNA from shed reptile skins: a simplified method, BioTechniques, 26, 1052, 10.2144/99266bm09
Fick, 2017, WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas, Int. J. Climatol., 37, 4302, 10.1002/joc.5086
Flores, 2001, Isoenzyme variability of five principal triatomine vector species of Chagas disease in Mexico, Infect. Genet. Evol., 1, 21, 10.1016/S1567-1348(01)00005-3
Fu, 1997, Statistical test of neutrality of mutation against population growth, hitchhiking and background selection, Genetics, 147, 915, 10.1093/genetics/147.2.915
Futuyma, 2013
Gadagkar, 2005, Inferring species phylogenies from multiple genes: concatenated sequence tree versus consensus gene tree, J. Exp. Zool. Part B Mol. Dev. Evol., 304, 64, 10.1002/jez.b.21026
Garcia, 2021, Intraspecific and interspecific phenotypic differences confirm the absence of cryptic speciation in Triatoma sordida (Hemiptera, Triatominae), Am. J. Trop. Med. Hyg., 105, 1759, 10.4269/ajtmh.21-0323
Gomez-Palacio, 2014, Molecular evidence of demographic expansion of the Chagas disease vector Triatoma dimidiata (Hemiptera, Reduviidae, Triatominae) in Colombia, PLoS Negl.Trop. Dis., 8, e2734, 10.1371/journal.pntd.0002734
Gómez-Palacio, 2015, Ecological niche and geographic distribution of the Chagas disease vector, Triatoma dimidiata (Reduviidae: Triatominae): evidence for niche differentiation among cryptic species, Infect. Genet. Evol., 36, 15, 10.1016/j.meegid.2015.08.035
Grant, 1998, Shallow population histories in deep evolutionary lineages of marine fishes: insights from sardines and anchovies and lessons for conservation, J. Hered., 89, 415, 10.1093/jhered/89.5.415
Grisales, 2010, Genetic differentiation of three colombian populations of Triatoma dimidiata (Latreille, 1811) by molecular analysis of the mitochondrial gene ND4, Biomedical, 30, 207, 10.7705/biomedica.v30i2.184
Gurgel-Goncalves, 2011, Geometric morphometrics and ecological niche modelling for delimitation of near-sibling triatomine species, Med. Vet. Entomol., 25, 93, 10.1111/j.1365-2915.2010.00920.x
Harris, 2003
Ho, 2014, The changing face of the molecular clock, Trends Ecol. Evol., 29, 496, 10.1016/j.tree.2014.07.004
Ho, 2014, Molecular-clock methods for estimating evolutionary rates and timescales, Mol. Ecol., 23, 5947, 10.1111/mec.12953
Huelsenbeck, 2001, MRBAYES: Bayesian inference of phylogenetic trees, Bioinformatics, 17, 754, 10.1093/bioinformatics/17.8.754
Ibarra-Cerdeña, 2014, Phylogeny and niche conservatism in north and central American triatomine bugs (Hemiptera: Reduviidae: Triatominae), vectors of Chagas' disease, PLoS Negl.Trop. Dis., 10.1371/journal.pntd.0003266
Jackson, 1998, Morphologically cryptic species confound ecological studies of the caddifishy genus gumaga (trichoptera: sericostomatidae) in Northern California, Aquat. Insect., 20, 69, 10.1076/aqin.20.2.69.4503
Jones, 2017, Algorithmic improvements to species delimitation and phylogeny estimation under the multispecies coalescent, J. Math. Biol., 74, 447, 10.1007/s00285-016-1034-0
Justi, 2014, Molecular phylogeny of triatomini (Hemiptera: Reduviidae: Triatominae), Parasite Vectors, 7, 149, 10.1186/1756-3305-7-149
Justi, 2016, Geological changes of the Americas and their influence on the diversification of the neotropical kissing bugs (Hemiptera: Reduviidae: Triatominae), PLoS Negl.Trop. Dis., 10, 10.1371/journal.pntd.0004527
Kalyaanamoorthy, 2017, ModelFinder: fast model selection for accurate phylogenetic estimates, Nat. Methods, 14, 587, 10.1038/nmeth.4285
Kapli, 2017, Multi-rate poisson tree processes for single-locus species delimitation under maximum likelihood and Markov chain Monte Carlo, Bioinformatics, 33, 1630, 10.1093/bioinformatics/btx025
Kass, 2018, Wallace: a flexible platform for reproducible modeling of species niches and distributions built for community expansion, Methods Ecol. Evol., 9, 1151, 10.1111/2041-210X.12945
Leigh, 2015, POPART: full-feature software for haplotype network construction, Methods Ecol. Evol., 6, 1110, 10.1111/2041-210X.12410
Lent, 1979, Revision of Triatominae (Hemiptera: ruduviidae) and their significance as vector of Chagas' disease, Bull. Am. Mus. Nat. Hist., 163, 123
Lima-Cordón, 2019, Description of Triatoma huehuetenanguensis sp. n., a potential Chagas disease vector (Hemiptera, Reduviidae, Triatominae), ZooKeys, 820, 51, 10.3897/zookeys.820.27258
Lowe, 2004, 320
Martinez-Hernandez, 2021, Population structure and genetic diversity of Triatoma longipennis (usinger, 1939) (Heteroptera: Reduviidae: Triatominae) in Mexico, Infect. Genet. Evol., 89, 10.1016/j.meegid.2021.104718
Mayares, 2014
Mayr, 1982
Miller, 2012, The CIPRES science gateway: enabling high-impact science for phylogenetics researchers with limited resources, 1
Minh, 2013, Ultrafast approximation for phylogenetic bootstrap, Mol. Biol. Evol., 30, 1188, 10.1093/molbev/mst024
Monteiro, 2018, Evolution, systematics, and biogeography of the Triatominae, vectors of Chagas disease, Adv. Parasitol., 99, 265, 10.1016/bs.apar.2017.12.002
Nguyen, 2015, IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies, Mol. Biol. Evol., 32, 268, 10.1093/molbev/msu300
Nixon, 1993, On outgroups, Cladistics, 9, 413, 10.1111/j.1096-0031.1993.tb00234.x
Okonechnikov, 2012, Unipro UGENE: a unified bioinformatics toolkit, Bioinformatics, 28, 1166, 10.1093/bioinformatics/bts091
Padial, 2010, The integrative future of taxonomy, Front. Zool., 7, 1, 10.1186/1742-9994-7-16
Paiva, 2022, A review of the taxonomy and biology of Triatominae subspecies (Hemiptera: Reduviidae), Parasitol. Res.
Panzera, 2015, Cryptic speciation in the Triatoma sordida subcomplex (Hemiptera, Reduviidae) revealed by chromosomal markers, Parasites Vectors, 8, 1, 10.1186/s13071-015-1109-6
Pech-May, 2019, Genetic variation and phylogeography of the Triatoma dimidiata complex evidence a potential center of origin and recent divergence of haplogroups having differential trypanosoma cruzi and DTU infections, PLoS Negl.Trop. Dis., 13, 10.1371/journal.pntd.0007044
Phillips, 2006, Maximum entropy modeling of species geographic distributions, Ecol. Model., 190, 231, 10.1016/j.ecolmodel.2005.03.026
Pita, 2016, New arrangements on several species subcomplexes of Triatoma genus based on the chromosomal position of ribosomal genes (Hemiptera -Triatominae), Infect. Genet. Evol., 43, 225, 10.1016/j.meegid.2016.05.028
Rambaut, A. 2014. FigTree v 1.3.1. http://tree.bio.ed.ac.uk/software/figtree/. Accessed May 2015.
Rambaut, A., Drummond A.J.. 2007. Tracer v 1.5. http://tree.bio.ed.ac.uk/software/tracer/. Accessed February 2018.
Ramsey, 2015, Atlas of Mexican Triatominae (Reduviidae: Hemiptera) and vector transmission of Chagas disease, Mem. Inst. Oswaldo Cruz, 110, 339, 10.1590/0074-02760140404
Reid, 2012, Phylogenetic estimation error can decrease the accuracy of species delimitation: a Bayesian implementation of the general mixed yule-coalescent model, BMC Evol. Biol., 12, 196, 10.1186/1471-2148-12-196
Rengifo-Correa, 2021, A biogeographic-ecological approach to disentangle reticulate evolution in the Triatoma phyllosoma species group (Heteroptera: Triatominae), vectors of Chagas disease, J. Zool. Syst. Evol. Res., 59, 94, 10.1111/jzs.12409
Richards, 2013, Novel polymerase chain reaction-restriction fragment length polymorphism assay to determine internal transcribed spacer-2 group in the Chagas disease vector, Triatoma dimidiata (latreille, 1811), Mem. Inst. Oswaldo Cruz, 108, 395, 10.1590/S0074-0276108042013001
Rivera, 2018, Molecular phylogenetics and environmental niche modeling reveal a cryptic species in the oligoryzomys flavescens complex (rodentia, cricetidae), J. Mammal., 99, 363, 10.1093/jmammal/gyx186
Ronquist, 2003, MrBayes 3: Bayesian phylogenetic inference under mixed models, Bioinformatics, 19, 1572, 10.1093/bioinformatics/btg180
Rozas, 2017, DnaSP 6: DNA sequence polymorphism analysis of large data sets, Mol. Biol. Evol., 34, 3299, 10.1093/molbev/msx248
Schofield, 1994, 80
Schonrogge, 2002, When rare species become endangered: cryptic speciation in myrmecophilous hoverfishes, Biol. J. Linn. Soc., 75, 291, 10.1111/j.1095-8312.2002.tb02070.x
Stal, 1872, Enumeratio Hemipterorum. Pars 2, Ibid., 10, 1
Stuart, 2006, High level of cryptic species diversity revealed by sympatric lineages of Southeast Asian forest frogs, Biology letters, 2, 470, 10.1098/rsbl.2006.0505
Tajima, 1989, Statistical method for testing the neutral mutation hypothesis by DNA polymorphism, Genetics, 123, 585, 10.1093/genetics/123.3.585
Tamura, 2013, MEGA6: molecular evolutionary genetics analysis version 6.0, Mol. Biol. Evol., 30, 2725, 10.1093/molbev/mst197
Vogler, 2007, Recent advances in DNA taxonomy, J. Zool. Syst. Evol. Res., 45, 1, 10.1111/j.1439-0469.2006.00384.x
Williams, 2006, Molecular systematics and phylogeography of the cryptic species complex baetis rhodani (ephemeroptera, baetidae), Mol. Phylogenet. Evol., 40, 370, 10.1016/j.ympev.2006.03.004
Wong, 2016, Molecular epidemiology of trypanosoma cruzi and Triatoma dimidiata in costal ecuador, Infect. Genet. Evol., 41, 207, 10.1016/j.meegid.2016.04.001
Zhang, 2013, A general species delimitation method with applications to phylogenetic placements, Bioinformatics, 29, 2869, 10.1093/bioinformatics/btt499