Molecular complexity and dynamics of cell-matrix adhesions
Tóm tắt
Currently >50 proteins have been reported to be associated with focal contacts and related ECM adhesions. Most of these contain multiple domains through which they can interact with different molecular partners, potentially forming a dense and heterogeneous protein network at the cytoplasmic faces of the adhesion site. The molecular and structural diversity of this ‘submembrane plaque’ is regulated by a wide variety of mechanisms, including competition between different partner proteins for the same binding sites, interactions triggered or suppressed by tyrosine phosphorylation, and conformational changes in component proteins, which can affect their reactivity. Indeed, integrin-mediated adhesions can undergo dynamic changes in structure and molecular properties from dot-like focal complexes to stress-fiber-associated focal contacts, which can further ‘mature’ to form fibronectin-bound fibrillar adhesions. These changes are driven by mechanical force generated by the actin- and myosin-containing contractile machinery of the cells, or by external forces applied to the cells, and regulated by matrix rigidity.
Từ khóa
Tài liệu tham khảo
Abercrombie, M. and Dunn, G. A. (1975). Adhesions of fibroblasts to substratum during contact inhibition observed by interference reflection microscopy. Exp. Cell Res.92, 57-62.
Abercrombie, M., Heaysman, J. E. and Pegrum, S. M. (1971). The locomotion of fibroblasts in culture. IV. Electron microscopy of the leading lamella. Exp. Cell Res.67, 359-367.
Bakolitsa, C., de Pereda, J. M., Bagshaw, C. R., Critchley, D. R. and Liddington, R. C. (1999). Crystal structure of the vinculin tail suggests a pathway for activation. Cell99, 603-613.
Beningo, K. A., Dembo, M., Kaverina, I., Small, J. V. and Wang, Y. (2001). Nascent focal adhesions are responsible for the generation of strong propulsive forces in migrating fibroblasts. J. Cell Biol.153, 881-888.
Bono, P., Rubin, K., Higgins, J. M. and Hynes, R. O. (2001). Layilin, a novel integral membrane protein, is a hyaluronan receptor. Mol. Biol. Cell12, 891-900.
Borowsky, M. L. and Hynes, R. O. (1998). Layilin, a novel talin-binding transmembrane protein homologous with C-type lectins, is localized in membrane ruffles. J. Cell Biol.143, 429-442.
Brindle, N. P., Holt, M. R., Davies, J. E., Price, C. J. and Critchley, D. R. (1996). The focal-adhesion vasodilator-stimulated phosphoprotein (VASP) binds to the proline-rich domain in vinculin. Biochem J.318, 753-757.
Chellaiah, M. A., Soga, N., Swanson, S., McAllister, S., Alvarez, U., Wang, D., Dowdy, S. F. and Hruska, K. A. (2000). Rho-A is critical for osteoclast podosome organization, motility, and bone resorption. J. Biol. Chem.275, 11993-12002.
Clark, E. A., King, W. G., Brugge, J. S., Symons, M. and Hynes, R. O. (1998). Integrin-mediated signals regulated by members of the rho family of GTPases. J. Cell Biol.142, 573-586.
David-Pfeuty, T. and Singer, S. J. (1980). Altered distributions of the cytoskeletal proteins vinculin and α-actinin in cultured fibroblasts transformed by Rous sarcoma virus. Proc. Natl. Acad. Sci. USA77, 6687-6691.
Duong, L. T., Lakkakorpi, P. T., Nakamura, I., Machwate, M., Nagy, R. M. and Rodan, G. A. (1998). PYK2 in osteoclasts is an adhesion kinase, localized in the sealing zone, activated by ligation of αvβ3 integrin, and phosphorylated by src kinase. J. Clin. Invest.102, 881-892.
Fukami, K., Endo, T., Imamura, M. and Takenawa, T. (1994). α-Actinin and vinculin are PIP2-binding proteins involved in signaling by tyrosine kinase. J. Biol. Chem.269, 1518-1522.
Geiger, B. and Bershadsky, A. (2001). Assembly and mechanosensory function of focal contacts. Curr. Opin. Cell Biol. 13, 584-592.
Gilmore, A. P. and Burridge, K. (1996). Regulation of vinculin binding to talin and actin by phosphatidyl-inositol-4-5-bisphosphate. Nature381, 531-535.
Harpur, A. G., Wouters, F. S. and Bastiaens, P. I. (2001). Imaging FRET between spectrally similar GFP molecules in single cells. Nat. Biotechnol.19, 167-169.
Huttelmaier, S., Bubeck, P., Rudiger, M. and Jockusch, B. M. (1997). Characterization of two F-actin-binding and oligomerization sites in the cell-contact protein vinculin. Eur. J. Biochem.247, 1136-1142.
Huttelmaier, S., Mayboroda, O., Harbeck, B., Jarchau, T., Jockusch, B. M. and Rudiger, M. (1998). The interaction of the cell-contact proteins VASP and vinculin is regulated by phosphatidylinositol-4,5-bisphosphate. Curr. Biol.8, 479-488.
Hynes, R. O. (1992). Integrins: versatility, modulation, and signaling in cell adhesion. Cell69, 11-25.
Izzard, C. S. and Lochner, L. R. (1976). Cell-to-substrate contacts in living fibroblasts: an interference reflexion study with an evaluation of the technique. J. Cell Sci.21, 129-159.
Izzard, C. S. and Lochner, L. R. (1980). Formation of cell-to-substrate contacts during fibroblast motility: an interference-reflexion study. J. Cell Sci.42, 81-116.
Jockusch, B. M. and Isenberg, G. (1981). Interaction of α-actinin and vinculin with actin: opposite effects on filament network formation. Proc. Natl. Acad. Sci. USA78, 3005-3009.
Johnson, R. P. and Craig, S. W. (1994). An intramolecular association between the head and tail domains of vinculin modulates talin binding. J. Biol. Chem.269, 12611-12619.
Johnson, R. P. and Craig, S. W. (1995). F-actin binding site masked by the intramolecular association of vinculin head and tail domains. Nature373, 261-264.
Johnson, R. P., Niggli, V., Durrer, P. and Craig, S. W. (1998). A conserved motif in the tail domain of vinculin mediates association with and insertion into acidic phospholipid bilayers. Biochemistry37, 10211-10222.
Kam, Z., Zamir, E. and Geiger, B. (2001). Probing molecular processes in live cells by quantitative multidimensional microscopy. Trends Cell Biol.11, 329-334.
Katz, B. Z., Zamir, E., Bershadsky, A., Kam, Z., Yamada, K. M. and Geiger, B. (2000). Physical state of the extracellular matrix regulates the structure and molecular composition of cell-matrix adhesions. Mol. Biol. Cell11, 1047-1060.
Kioka, N., Sakata, S., Kawauchi, T., Amachi, T., Akiyama, S. K., Okazaki, K., Yaen, C., Yamada, K. M. and Aota, S. (1999). Vinexin: a novel vinculin-binding protein with multiple SH3 domains enhances actin cytoskeletal organization. J. Cell Biol.144, 59-69.
Kiosses, W. B., Shattil, S. J., Pampori, N. and Schwartz, M. A. (2001). Rac recruits high-affinity integrin αvβ3 to lamellipodia in endothelial cell migration. Nat. Cell Biol.3, 316-320.
Kroemker, M., Rudiger, A. H., Jockusch, B. M. and Rudiger, M. (1994). Intramolecular interactions in vinculin control α-actinin binding to the vinculin head. FEBS Lett.355, 259-262.
Lakkakorpi, P. T., Nakamura, I., Nagy, R. M., Parsons, J. T., Rodan, G. A. and Duong, L. T. (1999). Stable association of PYK2 and p130(Cas) in osteoclasts and their co-localization in the sealing zone. J. Biol. Chem.274, 4900-4907.
Lakkakorpi, P. T., Wesolowski, G., Zimolo, Z., Rodan, G. A. and Rodan, S. B. (1997). Phosphatidylinositol 3-kinase association with the osteoclast cytoskeleton, and its involvement in osteoclast attachment and spreading. Exp. Cell Res.237, 296-306.
Linder, S., Hufner, K., Wintergerst, U. and Aepfelbacher, M. (2000). Microtubule-dependent formation of podosomal adhesion structures in primary human macrophages. J. Cell Sci.113, 4165-4176.
Mandai, K., Nakanishi, H., Satoh, A., Takahashi, K., Satoh, K., Nishioka, H., Mizoguchi, A. and Takai, Y. (1999). Ponsin/SH3P12: an l-afadin- and vinculin-binding protein localized at cell-cell and cell-matrix adherens junctions. J. Cell Biol.144, 1001-1017.
Marchisio, P. C., Cirillo, D., Naldini, L., Primavera, M. V., Teti, A. and Zambonin-Zallone, A. (1984). Cell-substratum interaction of cultured avian osteoclasts is mediated by specific adhesion structures. J. Cell Biol.99, 1696-1705.
Milam, L. M. (1985). Electron microscopy of rotary shadowed vinculin and vinculin complexes. J. Mol. Biol.184, 543-545.
Miller, G. J., Dunn, S. D. and Ball, E. H. (2001). Interaction of the N- and C-terminal domains of vinculin: characterization and mapping studies. J. Biol. Chem.276, 11729-11734.
Molony, L. and Burridge, K. (1985). Molecular shape and self-association of vinculin and metavinculin. J. Cell. Biochem.29, 31-36.
Myohanen, H. T., Stephens, R. W., Hedman, K., Tapiovaara, H., Ronne, E., Hoyer-Hansen, G., Dano, K. and Vaheri, A. (1993). Distribution and lateral mobility of the urokinase-receptor complex at the cell surface. J. Histochem. Cytochem.41, 1291-1301.
Nada, S., Okada, M., MacAuley, A., Cooper, J. A. and Nakagawa, H. (1991). Cloning of a complementary DNA for a protein-tyrosine kinase that specifically phosphorylates a negative regulatory site of p60c-src. Nature351, 69-72.
Niggli, V. and Gimona, M. (1993). Evidence for a ternary interaction between α-actinin, (meta)vinculin and acidic-phospholipid bilayers. Eur. J. Biochem.213, 1009-1015.
Nobes, C. D. and Hall, A. (1995). Rho, rac, and cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell81, 53-62.
Ochoa, G. C., Slepnev, V. I., Neff, L., Ringstad, N., Takei, K., Daniell, L., Kim, W., Cao, H., McNiven, M., Baron, R. et al. ( 2000). A functional link between dynamin and the actin cytoskeleton at podosomes. J. Cell Biol.150, 377-389.
Olski, T. M., Noegel, A. A. and Korenbaum, E. (2001). Parvin, a 42 kDa focal adhesion protein, related to the α-actinin superfamily. J. Cell Sci.114, 525-538.
Pankov, R., Cukierman, E., Katz, B. Z., Matsumoto, K., Lin, D. C., Lin, S., Hahn, C. and Yamada, K. M. (2000). Integrin dynamics and matrix assembly: tensin-dependent translocation of α5β1 integrins promotes early fibronectin fibrillogenesis. J. Cell Biol.148, 1075-1090.
Reinhard, M., Rudiger, M., Jockusch, B. M. and Walter, U. (1996). VASP interaction with vinculin: a recurring theme of interactions with proline-rich motifs. FEBS Lett.399, 103-107.
Riveline, D., Zamir, E., Balaban, N. Q., Schwarz, U. S., Ishizaki, T., Narumiya, S., Kam, Z., Geiger, B. and Bershadsky, A. D. (2001). Focal contacts as mechanosensors: externally applied local mechanical force induces growth of focal contacts by an mDia1-dependent and ROCK-independent mechanism. J. Cell Biol.153, 1175-1185.
Rottner, K., Hall, A. and Small, J. V. (1999). Interplay between Rac and Rho in the control of substrate contact dynamics. Curr. Biol.9, 640-648.
Schwartz, M. A., Schaller, M. D. and Ginsberg, M. H. (1995). Integrins: emerging paradigms of signal transduction. Annu. Rev. Cell Dev. Biol.11, 549-599.
Sechi, A. S. and Wehland, J. (2000). The actin cytoskeleton and plasma membrane connection: PtdIns(4, 5)P2 influences cytoskeletal protein activity at the plasma membrane. J. Cell Sci.113, 3685-3695.
Smilenov, L. B., Mikhailov, A., Pelham, R. J., Marcantonio, E. E. and Gundersen, G. G. (1999). Focal adhesion motility revealed in stationary fibroblasts. Science286, 1172-1174.
Tang, H., Kerins, D. M., Hao, Q., Inagami, T. and Vaughan, D. E. (1998). The urokinase-type plasminogen activator receptor mediates tyrosine phosphorylation of focal adhesion proteins and activation of mitogen- activated protein kinase in cultured endothelial cells. J. Biol. Chem.273, 18268-18272.
Tarone, G., Cirillo, D., Giancotti, F. G., Comoglio, P. M. and Marchisio, P. C. (1985). Rous sarcoma virus-transformed fibroblasts adhere primarily at discrete protrusions of the ventral membrane called podosomes. Exp. Cell Res.159, 141-157.
Turner, C. E., Glenney, J. R., Jr and Burridge, K. (1990). Paxillin: a new vinculin-binding protein present in focal adhesions. J. Cell Biol.111, 1059-1068.
Volberg, T., Romer, L., Zamir, E. and Geiger, B. (2001). pp60c-src and related tyrosine kinases: a role in the assembly and reorganization of matrix adhesions. J. Cell Sci.114, 2279-2289.
Wachsstock, D. H., Wilkins, J. A. and Lin, S. (1987). Specific interaction of vinculin with α-actinin. Biochem. Biophys. Res. Commun.146, 554-560.
Watanabe, N., Kato, T., Fujita, A., Ishizaki, T. and Narumiya, S. (1999). Cooperation between mDia1 and ROCK in Rho-induced actin reorganization. Nat. Cell Biol.1, 136-143.
Weekes, J., Barry, S. T. and Critchley, D. R. (1996). Acidic phospholipids inhibit the intramolecular association between the N- and C-terminal regions of vinculin, exposing actin-binding and protein kinase C phosphorylation sites. Biochem. J.314, 827-832.
Wei, Y., Yang, X., Liu, Q., Wilkins, J. A. and Chapman, H. A. (1999). A role for caveolin and the urokinase receptor in integrin-mediated adhesion and signaling. J. Cell Biol.144, 1285-1294.
Wesolowski, G., Duong, L. T., Lakkakorpi, P. T., Nagy, R. M., Tezuka, K., Tanaka, H., Rodan, G. A. and Rodan, S. B. (1995). Isolation and characterization of highly enriched, prefusion mouse osteoclastic cells. Exp. Cell Res.219, 679-686.
Wilkins, J. A. and Lin, S. (1982). High-affinity interaction of vinculin with actin filaments in vitro. Cell28, 83-90.
Williams, J. C., Weijland, A., Gonfloni, S., Thompson, A., Courtneidge, S. A., Superti-Furga, G. and Wierenga, R. K. (1997). The 2.35 Å crystal structure of the inactivated form of chicken Src: a dynamic molecule with multiple regulatory interactions. J. Mol. Biol.274, 757-775.
Winkler, J., Lunsdorf, H. and Jockusch, B. M. (1996). The ultrastructure of chicken gizzard vinculin as visualized by high-resolution electron microscopy. J. Struct. Biol.116, 270-277.
Wood, C. K., Turner, C. E., Jackson, P. and Critchley, D. R. (1994). Characterisation of the paxillin-binding site and the C-terminal focal adhesion targeting sequence in vinculin. J. Cell Sci.107, 709-717.
Woods, A. and Couchman, J. R. (1994). Syndecan 4 heparan sulfate proteoglycan is a selectively enriched and widespread focal adhesion component. Mol. Biol. Cell5, 183-192.
Woods, A. and Couchman, J. R. (1998). Syndecans: synergistic activators of cell adhesion. Trends Cell Biol.8, 189-192.
Woods, A., Longley, R. L., Tumova, S. and Couchman, J. R. (2000). Syndecan-4 binding to the high affinity heparin-binding domain of fibronectin drives focal adhesion formation in fibroblasts. Arch. Biochem. Biophys.374, 66-72.
Wouters, F. S., Bastiaens, P. I., Wirtz, K. W. and Jovin, T. M. (1998). FRET microscopy demonstrates molecular association of non-specific lipid transfer protein (nsL-TP) with fatty acid oxidation enzymes in peroxisomes. EMBO J.17, 7179-7189.
Xu, W., Harrison, S. C. and Eck, M. J. (1997). Three-dimensional structure of the tyrosine kinase c-Src. Nature385, 595-602.
Yebra, M., Goretzki, L., Pfeifer, M. and Mueller, B. M. (1999). Urokinase-type plasminogen activator binding to its receptor stimulates tumor cell migration by enhancing integrin-mediated signal transduction. Exp. Cell Res.250, 231-240.
Zamir, E., Katz, B. Z., Aota, S., Yamada, K. M., Geiger, B. and Kam, Z. (1999). Molecular diversity of cell-matrix adhesions. J. Cell Sci.112, 1655-1669.
Zamir, E., Katz, M., Posen, Y., Erez, N., Yamada, K. M., Katz, B. Z., Lin, S., Lin, D. C., Bershadsky, A., Kam, Z. et al. ( 2000). Dynamics and segregation of cell-matrix adhesions in cultured fibroblasts. Nat. Cell Biol.2, 191-196.