Molecular communication: Harnessing biochemical materials to engineer biomimetic communication systems

Nano Communication Networks - Tập 1 - Trang 20-30 - 2010
Satoshi Hiyama1, Yuki Moritani1
1Research Laboratories, NTT DOCOMO Inc., NTT DOCOMO R&D Center, 3-6 Hikarinooka, Yokosuka-shi, Kanagawa 239-8536, Japan

Tài liệu tham khảo

Akyildiz, 2008, Nanonetworks: a new communication paradigm, Comput. Netw., 52, 2260, 10.1016/j.comnet.2008.04.001 Alberts, 1997 B. Atakan, O.B. Akan, An information theoretical approach for molecular communication, in: Proc. Bio-Inspired Models of Network, Information and Computing Systems, BIONETICS’07, 2007. B. Atakan, O.B. Akan, On molecular multiple-access, broadcast, and relay channels in nanonetworks, in: Proc. Bio-Inspired Models of Network, Information and Computing Systems, BIONETICS’08, 2008. Atakan, 2008, On channel capacity and error compensation in molecular communication, vol. 5410, 59 B. Atakan, O.B. Akan, Single and multiple-access channel capacity in molecular nanonetworks, in: Proc. International Conference on Nano-Networks, Nano-Net’09, 2009. Bachand, 2004, Assembly and transport of nanocrystal CdSe quantum dot nanocomposites using microtubules and kinesin motor proteins, Nano Lett., 4, 817, 10.1021/nl049811h Bachand, 2006, Active capture and transport of virus particles using a biomolecular motor-driven, nanoscale antibody sandwich assay, Small, 2, 381, 10.1002/smll.200500262 Basu, 2005, A synthetic multicellular system for programmed pattern formation, Nature, 434, 1130, 10.1038/nature03461 Bio Fab Group, 2006, Engineering life: building a FAB for biology, Scientific American, 44 Block, 1990, Bead movement by single kinesin molecules studied with optical tweezers, Nature, 348, 348, 10.1038/348348a0 Bottier, 2009, Active transport of oil droplets along oriented microtubules by kinesin molecular motors, Lab. Chip., 9, 1694, 10.1039/b822519b C. Bottier, M.C. Tarhan, D. Collard, R. Yokokawa, H. Fujita, Kinesin-based transportation and electrofusion of lipid vesicles, in: Proc. International Conference on Miniaturized Systems for Chemistry and Life Science, MicroTAS’08, 2008, pp. 871–873. Brunner, 2007, Cargo pick-up from engineered loading stations by kinesin driven molecular shuttles, Lab. Chip., 7, 1263, 10.1039/b707301a Chan, 2009, Effects of linker sequences on vesicle fusion mediated by lipid-anchored DNA oligonucleotides, Proc. Natl. Acad. Sci. USA, 106, 979, 10.1073/pnas.0812356106 Diez, 2003, Stretching and transporting DNA molecules using motor proteins, Nano Lett., 3, 1251, 10.1021/nl034504h Doot, 2007, Engineered networks of oriented microtubule filaments for directed cargo transport, Soft. Matter., 3, 349, 10.1039/B607281J A.W. Eckford, Nanoscale communication with Brownian motion, in: Proc. Annual Conference on Information Sciences and Systems, CISS’07, 2007, pp. 160–165. A.W. Eckford, Achievable information rates for molecular communication with distinct molecules, in: Proc. Workshop on Computing and Communications from Biological Systems: Theory and Applications, CCBS’07, 2007. A.W. Eckford, Timing information rates for active transport molecular communication, in: Proc. International Conference on Nano-Networks, Nano-Net’09, 2009, pp. 24–28. Ellens, 1985, H+- and Ca2+-induced fusion and destabilization of liposomes, Biochemistry, 24, 3099, 10.1021/bi00334a005 A. Enomoto, M. Moore, T. Nakano, R. Egashira, T. Suda, A. Kayasuga, H. Kojima, H. Sakibara, K. Oiwa, A molecular communication system using a network of cytoskeletal filaments, in: Proc. NSTI Nanotechnology Conference and Trade Show, Nanotech’06, vol. 1, 2006, pp. 725–728. Fischer, 2009, A smart dust biosensor powered by kinesin motors, Nat. Nanotechnol., 4, 162, 10.1038/nnano.2008.393 Fukuda, 2001, Dynamic behavior of a transmembrane molecular switch as an artificial cell-surface receptor, J. Mol. Cat. B: Enzym., 11, 971, 10.1016/S1381-1177(00)00012-6 Giné, 2009, Molecular communication options for long range nanonetworks, Comput. Netw., 53, 2753, 10.1016/j.comnet.2009.08.001 Goel, 2008, Harnessing biological motors to engineer systems for nanoscale transport and assembly, Nat. Nanotechnol., 3, 465, 10.1038/nnano.2008.190 Hess, 2001, Molecular shuttles based on motor proteins: active transport in synthetic environments, Rev. Mol. Biotechnol., 82, 67, 10.1016/S1389-0352(01)00029-0 Hiratsuka, 2001, Controlling the direction of kinesin-driven microtubule movements along microlithographic tracks, Biophys. J., 81, 1555, 10.1016/S0006-3495(01)75809-2 Hiyama, 2009, Biomolecular-motor-based nano- or microscale particle translocations on DNA microarrays, Nano Lett., 9, 2407, 10.1021/nl901013k Hiyama, 2008, Autonomous loading, transport, and unloading of specified cargoes by using DNA hybridization and biological motor-based motility, Small, 4, 410, 10.1002/smll.200700528 S. Hiyama, Y. Isogawa, T. Suda, Y. Moritani, K. Sutoh, A design of an autonomous molecule loading/transporting/unloading system using DNA hybridization and biomolecular linear motors, in: Proc. European Nano Systems, ENS’05, 2005, pp. 75–80. Hiyama, 2009, A biochemically-engineered molecular communication system, vol. 3, 85 Hiyama, 2008, Molecular transport system in molecular communication, NTT DOCOMO Technical J., 10, 49 S. Hiyama, Y. Moritani, T. Suda, R. Egashira, A. Enomoto, M. Moore, T. Nakano, Molecular communication, in: Proc. NSTI Nanotechnology Conference and Trade Show, Nanotech’05, vol. 3, 2005, pp. 391–394. S. Hiyama, Y. Moritani, S. Takeuchi, K. Sutoh, Selective capture and transport of lipid vesicles by using DNAs and biomolecular motors, in: Proc. International Conference on Quantum, Nano and Micro Technologies, ICQNM’10, 2010, pp. 23–26. Huang, 2007, Microtubule transport, concentration and alignment in enclosed microfluidic channels, Biomed. Microdev., 9, 175, 10.1007/s10544-006-9019-1 Hutchins, 2007, Directing transport of CoFe2O4-functionalized microtubules with magnetic fields, Small, 3, 126, 10.1002/smll.200600410 Inaoka, 2007, Vesicle fission of giant unilamellar vesicles of liquid-ordered-phase membranes induced by amphiphiles with a single long hydrocarbon chain, Langmuir, 23, 720, 10.1021/la062078k Iwamoto, 2004, Gemini peptide lipids with ditopic ion-recognition site. Preparation and functions as an inducer for assembling of liposomal membranes, Tetrahedron, 60, 9841, 10.1016/j.tet.2004.08.072 Jesorka, 2008, Liposomes: technologies and analytical applications, Annu. Rev. Anal. Chem., 1, 801, 10.1146/annurev.anchem.1.031207.112747 Kaneda, 2009, Direct formation of proteo-liposomes by in vitro synthesis and cellular cytosolic delivery with connexin-expressing liposomes, Biomaterials, 30, 3971, 10.1016/j.biomaterials.2009.04.006 Kashiwada, 2009, Target-selective vesicle fusion system with pH-selectivity and responsiveness, Soft. Matter., 5, 4719, 10.1039/b909503a Kumar, 1996, The gap junction communication channel, Cell, 84, 381, 10.1016/S0092-8674(00)81282-9 Lin, 2008, Self-contained, biomolecular motor-driven protein sorting and concentrating in an ultrasensitive microfluidic chip, Nano Lett., 8, 1041, 10.1021/nl072742x J.-Q. Liu, T. Nakano, An information theoretic model of molecular communication based on cellular signaling, in: Proc. Workshop on Computing and Communications from Biological Systems: Theory and Applications, CCBS’07, 2007. Luisi, 2000 Maru, 2008, Successive fusion of vesicles aggregated by DNA duplex formation in the presence of Triton X-100, Chem. Lett., 37, 340, 10.1246/cl.2008.340 M. Moore, A. Enomoto, T. Nakano, R. Egashira, T. Suda, A. Kayasuga, H. Kojima, H. Sakakibara, K. Oiwa, A design of a molecular communication system for nanomachines using molecular motors, in: Proc. IEEE International Conference on Pervasive Computing and Communications WORKSHOPS, UbiCare’06, 2006, pp. 554–559. M.J. Moore, A. Enomoto, T. Suda, A. Kayasuga, K. Oiwa, Molecular communication: uni-cast communication on a microtubule topology, in: Proc. IEEE International Conference on Systems, Man and Cybernetics, SMC’08, 2008, pp. 18–23. Moore, 2007, Molecular communication: new paradigm for communication among nano-scale biological machines, vol. III M.J. Moore, A. Enomoto, S. Watanabe, K. Oiwa, T. Suda, Simulating molecular motor uni-cast information rate for molecular communication, in: Proc. Annual Conference on Information Sciences and Systems, CISS’09, 2009. p. 859–864. Moore, 2009, Molecular communication: modeling noise effects on information rate, IEEE Trans. Nanobiosci., 8, 169, 10.1109/TNB.2009.2025039 Y. Moritani, S. Hiyama, T. Suda, Molecular communication for health care applications, in: Proc. IEEE International Conference on Pervasive Computing and Communications WORKSHOPS, UbiCare’06, 2006, pp. 549–553. Y. Moritani, S. Hiyama, T. Suda, Molecular communication—a biochemically-engineered communication system, in: Proc. Frontiers in the Convergence of Bioscience and Information Technologies, FBIT’07, 2007, pp. 839–844. Moritani, 2009, A molecular communication system, 82 Y. Moritani, S. Hiyama, T. Suda, Molecular communication among nanomachines using vesicles, in: Proc. NSTI Nanotechnology Conference and Trade Show, Nanotech’06, vol. 2, 2006, pp. 705–708. Y. Moritani, S.-M. Nomura, S. Hiyama, K. Akiyoshi, T. Suda, A molecular communication interface using liposomes with gap junction proteins, in: Proc. International Conference on Bio-Inspired Models of Network, Information and Computing Systems, BIONETICS’06, 2006. Y. Moritani, S.-M. Nomura, S. Hiyama, T. Suda, K. Akiyoshi, A communication interface using vesicles embedded with channel forming proteins in molecular communication, in: Proc. International Conference on Bio-Inspired Models of Network, Information and Computing Systems, BIONETICS’07, 2007. Mukai, 2009, Propagation and amplification of molecular information using a photoresponsive molecular switch, Supramol. Chem., 21, 284, 10.1080/10610270802468439 Muthukrishnan, 2006, Transport of semiconductor nanocrystals by kinesin molecular motors, Small, 2, 626, 10.1002/smll.200500223 T. Nakano, Y.-H. Hsu, W.C. Tang, T. Suda, D. Lin, T. Koujin, T. Haraguchi, Y. Hiraoka, Microplatform for intercellular communication, in: Proc. IEEE International Conference on Nano/Micro Engineered and Molecular Systems, IEEE NEMS’08, 2008, pp. 476–479. Nakano, 2009, A locally-induced increase in intracellular Ca2+ propagates cell-to-cell in the presence of plasma membrane Ca2+ ATPase inhibitors in non-excitable cells, FEBS Lett., 583, 3593, 10.1016/j.febslet.2009.10.032 T. Nakano, J.-Q. Liu, Information transfer through calcium signaling, in: Proc. International Conference on Nano-Networks, Nano-Net’09, 2009. Nakano, 2008, Molecular communication: biological communications technology, J. Natl. Inst. Inf. Commun. Technol., 55, 75 T. Nakano, T. Suda, T. Koujin, T. Haraguchi, Y. Hiraoka, Molecular communication through gap junction channels: system design, experiments and modeling, in: Proc. International Conference on Bio-Inspired Models of Network, Information and Computing Systems, BIONETICS’07, 2007. Nakano, 2008, Molecular communication through gap junction channels, vol. 5410, 81 T. Nakano, T. Suda, M. Moore, R. Egashira, A. Enomoto, K. Arima, Molecular communication for nanomachines using intercellular calcium signaling, in: Proc. IEEE Conference on Nanotechnology, IEEE NANO’05, 2005. Pollard, 2004 Raab, 2008, Transport and detection of unlabeled nucleotide targets by microtubules functionalized with molecular beacons, Biotechnol. Bioeng., 99, 764, 10.1002/bit.21645 Ramachandran, 2006, Selective loading of kinesin-powered molecular shuttles with protein cargo and its application to biosensing, Small, 2, 330, 10.1002/smll.200500265 G. Rozenberg, T. Bäck, J.N. Kok (Eds.), Handbook of Natural Computing, Springer, 2010 (in press). Y. Sakakibara, S. Hiyama, Bacterial computing and molecular communication, in: G. Rozenberg, T. Bäck, J.N. Kok (Eds.), Handbook of Natural Computing, vol. II. Springer, 2010 (Chapter 36) (in press). Y. Sasaki, M. Hashizume, K. Maruo, N. Yamasaki, J. Kikuchi, Y. Moritani, S. Hiyama, T. Suda, Controlled propagation in molecular communication using tagged liposome containers, in: Proc. International Conference on Bio-Inspired Models of Network, Information and Computing Systems, BIONETICS’06, 2006. Sasaki, 2006, Photo- and thermo-responsive assembly of liposomal membranes triggered by a gemini peptide lipid as a molecular switch, J. Photochem. Photobiol. A: Chem., 183, 309, 10.1016/j.jphotochem.2006.05.022 Sasaki, 2010, A nanosensory device fabricated on a liposome for detection of chemical signals, Biotechnol. Bioeng., 105, 37, 10.1002/bit.22521 Sato, 2003, Oligomerization of a cargo receptor directs protein sorting into COPII-coated transport vesicles, Mol. Biol. Cell, 14, 3055, 10.1091/mbc.E03-02-0115 2003 Spetzler, 2007, Recent developments of biomolecular motors as on-chip devices using single molecule techniques, Lab. Chip., 7, 1633, 10.1039/b711066a T. Suda, M. Moore, T. Nakano, R. Egashira, A. Enomoto, Exploratory research on molecular communication between nanomachines, in: Proc. Genetic and Evolutionary Computation Conference, GECCO’05, 2005. Taira, 2006, Selective detection and transport of fully matched DNA by DNA-loaded microtubule and kinesin motor protein, Biotechnol. Bioeng., 95, 533, 10.1002/bit.21055 Torchilin, 2006, Recent approaches to intracellular delivery of drugs and DNA and organelle targeting, Annu. Rev. Biomed. Eng., 8, 343, 10.1146/annurev.bioeng.8.061505.095735 Tresset, 2004, A microfluidic device for electrofusion of biological vesicles, Biomed. Microdev., 6, 213, 10.1023/B:BMMD.0000042050.95246.af Vale, 2003, The molecular motor toolbox for intracellular transport, Cell, 112, 467, 10.1016/S0092-8674(03)00111-9 van den Heuvel, 2006, Molecular sorting by electrical steering of microtubules in kinesin-coated channels, Science, 312, 910, 10.1126/science.1124258 van den Heuvel, 2007, Motor proteins at work for nanotechnology, Science, 317, 333, 10.1126/science.1139570 Verhey, 2009, Traffic control: regulation of kinesin motors, Nat. Rev. Mol. Cell. Bio., 10, 765, 10.1038/nrm2782 F. Walsh, Development of molecular based communication protocols for nanomachines, in: Proc. International Conference on Nano-Networks, Nano-Net’07, 2007. F. Walsh, S. Balasubramaniam, D. Botvich, W. Donnelly, Review of communication mechanisms for biological nano and MEMS devices, in: Proc. Bio-Inspired Models of Network, Information and Computing Systems, BIONETICS’07, 2007. F. Walsh, S. Balasubramaniam, D. Botvich, T. Suda, T. Nakano, S.F. Bush, M.O. Foghlu, Hybrid DNA and enzymatic based computation for address encoding, link switching and error correction in molecular communication, in: Proc. International Conference on Nano-Network, Nano-Net’08, 2008. Wang, 2010, Budding and fission of cationic binary lipid vesicles induced by the incorporation of pyranine, Chem. Lett., 39, 54, 10.1246/cl.2010.54 J. Wiedermann, L. Petrů, Communicating mobile nano-machines and their computational power, in: Proc. International Conference on Nano-Networks, Nano-Net’08, 2008. Yokokawa, 2008, Simultaneous and bidirectional transport of kinesin-coated microspheres and dynein-coated microspheres on polarity-oriented microtubules, Biotechnol. Bioeng., 101, 1, 10.1002/bit.21874 You, 2004, Programmed population control by cell–cell communication and regulated killing, Nature, 428, 868, 10.1038/nature02491