Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Định danh phân tử của rêu sừng (Anthocerotophyta) dựa trên vùng DNA diệp lục trnL–trnF
Tóm tắt
Trong các cây phát sinh chủng loại được tạo ra từ các trình tự intron trnL UAA, rêu sừng (được đại diện bởi chín loài từ các chi Anthoceros, Dendroceros, Megaceros, Notothylas và Phaeoceros) được xác định là một nhóm đơn ngành và tách biệt khỏi các nhánh của rêu, dương xỉ và thực vật có mạch. Một cấu trúc thứ cấp của intron trnL UAA của Anthoceros agrestis được trình bày, thể hiện sự sắp xếp của các vùng stem-loop P1–P9. Các thay đổi cặp bazơ bù (các vị trí đồng tiến hóa) được phát hiện trong các vùng P4/5 và P9 trong các trình tự rêu sừng. Tính đồng đối của vùng biến đổi nhất, P8, không thể phát hiện được nữa do sự tiến hóa phân cách cực kỳ nhanh chóng của đoạn này trong các nhóm thực vật đất chính. Tương tự, sự khác biệt trình tự cao xảy ra trong khoảng cách liên gen trnL–trnF. Ngoài các thay thế đồng sinh trong intron trnL UAA, rêu sừng có đặc điểm là một vùng P6 lớn bao gồm nhiều yếu tố lặp lại. Dữ liệu phân tử do đó hỗ trợ rêu sừng đại diện cho một dòng thực vật đất độc lập (Anthocerotophyta). Tuy nhiên, các mối quan hệ giữa rêu sừng và các nhóm thực vật đất khác vẫn chưa được giải quyết trong các cây intron trnL UAA, và rất không có khả năng rằng rêu là đơn ngành theo cách phân loại truyền thống của chúng, tức là bao gồm rêu sừng, rêu và đẳng hệ.
Từ khóa
#rêu sừng #phân loại học #DNA diệp lục #tiến hóa #thực vật đấtTài liệu tham khảo
Beckert S, Steinhauser S, Muhle H, Knoop V (1999) A molecular phylogeny of bryophytes based on nucleotide sequences of the mitochondrial nad5 gene. Plant Syst Evol 218:179–192
Besendahl A, Qiu Y-L, Lee J, Palmer JD, Bhattacharya D (2000) The cyanobacterial origin and vertical transmission of the plastid tRNALeu group-I intron. Curr Genet 37:12–23
Bopp M, Capesius I (1996) New aspects of Bryophyte taxonomy provided by a molecular approach. Bot Acta 109:368–372
Bopp M, Capesius I (1998) A molecular approach to bryophyte systematics. In: Bates JW, Ashton NW, Duckett JG (eds) Bryology for the twenty-first century. Maney and the British Bryological Society, Leeds, pp 79–88
Borsch T, Hilu KW, Quandt D, Wilde V, Neinhuis C, Barthlott W (2003) Non-coding plastid trnT-trnF sequences reveal a well resolved phylogeny of basal angiosperms. J Evol Biol 16:558–576
Bremer K (1985) Summary of green plant phylogeny and classification. Cladistics 1:369–385
Bremer K, Humphries CJ, Mishler BD, Churchill SP (1987) On cladistic relationships in green plants. Taxon 36:339–349
Calie PJ, Hughes KW (1987) The consensus land plant chloroplast gene order is present with two alterations in the moss Physcomitrella patens. Mol Gen Genet 208:335–341
Capesius I (1995) A molecular phylogeny of bryophytes based on the nuclear encoded 18S rRNA genes. J Plant Physiol 146:59–63
Cech TR, Damberger SH, Gutell RR (1994) Representation of the secondary and tertiary structure of group I introns. Struct Biol 1:273–280
Cronquist A (1971) Introductory botany, 2nd edn. Harper and Row, New York
DeLuca TH, Zackrisson O, Nilsson M-C, Sellstedt A (2002) Quantifying nitrogen-fixation in feather moss carpets of boreal forests. Nature 419:917–920
Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15
Duff RJ, Nickrent DL (1999) Phylogenetic relationships of land plants using mitochondrial small-subunit rDNA sequences. Am J Bot 86:372–386
Frey W, Hofmann M, Hilger HH (2001) The gametophyte-sporophyte junction: unequivocal hints for two evolutionary lines of archegoniate land plants. Flora 196:431–445
Garbary DJ, Renzaglia KS (1998) Bryophyte phylogeny and the evolution of land plants: evidence from development and ultrastructure. In: Bates JW, Ashton NW, Duckett JG (eds) Bryology for the twenty-first century. Maney and the British Bryological Society, Leeds, pp 45–64
Garbary DJ, Renzaglia KS, Duckett JG (1993) The phylogeny of land plants: a cladistic analysis based on male gametogenesis. Plant Syst Evol 188:237–269
Gehrig H, Heute V, Kluge M (2001) New partial sequences of phosphoenolpyruvate carboxylase as molecular phylogenetic markers. Mol Phylogenet Evol 20:262–274
Hasegawa J (1988) A proposal for a new system of the Anthocerotae, with a revision of the genera. J Hattori Bot Lab 64:87–95
Hässel de Menéndez GG (1988) A proposal for a new classification of the genera within the Anthocerotophyta. J Hattori Bot Lab 64:71–86
Hedderson TA, Chapman RL, Rootes WL (1996) Phylogenetic relationships of bryophytes inferred from nuclear-encoded rRNA gene sequences. Plant Syst Evol 200:213–224
Hedderson TA, Chapman RL, Cox CJ (1998) Bryophytes and the origins and diversification of land plants: new evidence from molecules. In: Bates JW, Ashton NW, Duckett JG (eds) Bryology for the twenty-first century. Maney and the British Bryological Society, Leeds, pp 65–78
Hepperle D (2003) Align v01/2003: manual sequence alignment editor for PCs. http://www.gwdg.de/~dhepper/software.htm. Cited 6 January 2003
Hori H, Lim B-L, Osawa S (1985) Evolution of green plants as deduced from 5S rRNA sequences. Proc Natl Acad Sci USA 82:820–823
Hyvönen J, Piippo S (1993) Cladistic analysis of the hornworts (Anthocerotophyta). J Hattori Bot Lab 74:105–119
Katoh K, Hori H, Osawa S (1983) The nucleotide sequences of 5S ribosomal RNAs from four Bryophyta-species. Nucleic Acids Res 11:5671–5674
Kenrick P, Crane PR (1997) The origin and early diversification of land plants: a cladistic study. Smithsonian Institution Press, Washington, D.C.
Kuhsel MG, Strickland R, Palmer JD (1990) An ancient group I intron shared by eubacteria and chloroplasts. Science 250:1570–1573
Kugita M, Kaneko A, Yamamoto Y, Takeya Y, Matsumoto T, Yoshinaga K (2003) The complete nucleotide sequence of the hornwort (Anthoceros formosae) chloroplast genome: insight into the earliest land plants. Nucleic Acids Res 31:176–721
Lewis LA, Misher BD, Vilgalys R (1997) Phylogenetic relationships of the liverworts (Hepaticae), a basal embryophyte lineage, inferred from nucleotide sequence data of the chloroplast gene rbcL. Mol Phylogenet Evol 7:377–393
Lück R, Steger G, Riesner D (1966) Thermodynamic prediction of conserved secondary structure: application to RRE-element of HIV, tRNA-like element of CMV, and mRNA of prion protein. J Mol Biol 258:813–826
Lück R, Gräf S, Steger G (1999) ConStruct: a tool for thermodynamic controlled prediction of conserved secondary structure. Nucleic Acids Res 21:4208–4217
Malek O, Lättig K, Hiesel R, Brennicke A, Knoop V (1996) RNA editing in bryophytes and a molecular phylogeny of land plants EMBO J 15:1403–1411
Manhardt JR (1994) Phylogenetic analysis of green plant rbcL sequences. Mol Phylogenet Evol 3:114–127
Mathews DH, Sabina J, Zuker M, Turner DH (1999) Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. J Mol Biol 288:911–940
Mishler BD, Churchill SP (1984) A cladistic approach to the phylogeny of the "bryophytes". Brittonia 36:406–424
Mishler BD, Churchill SP (1985) Transition to a land flora: phylogenetic relationships of the green algae and bryophytes. Cladistics 1:305–328
Mishler BD, Thrall PH, Hopple JSJ, De Luna E, Vilgalys R (1992) A molecular approach to the phylogeny of bryophytes: cladistic analysis of chloroplast-encoded 16S and 23S ribosomal RNA genes. Bryologist 95:172–180
Mishler BD, Lewis LA, Buchheim MA, Renzaglia KS, Garbary DJ, Delwiche CF, Zechman FW, Kantz TS, Chapman RL (1994) Phylogenetic relationships of the "green algae" and "bryophytes". Ann Mo Bot Gard 81:451–483
Newton AE, Cox CJ, Duckett JG, Wheeler JA, Goffinet B, Hedderson TA, Mishler BD (2000) Evolution of the major moss lineages: phylogenetic analyses based on multiple gene sequences and morphology. Bryologist 103:187–211
Nickrent DL, Parkinson CL, Palmer JD, Duff RJ (2000) Multigene phylogeny of land plants with special reference to bryophytes and the earliest land plants. Mol Biol Evol 17:1885–1895
Nishiyama T, Kato M (1999) Molecular phylogenetic analysis among bryophytes and tracheophytes based on combined data of plastid coded genes and the 18S rRNA gene. Mol Biol Evol 16:1027–1036
Ohyama K, Fukuzawa H, Kohchi T, Shirai H, Sano T, Sano S, Umesono K, Shiki Y, Takeuchi M, Chang Z, Aota S, Inokuchi H, Ozeki H (1986) Chloroplast gene organization deduced from complete sequence of the liverwort Marchantia polymorpha chloroplast DNA. Nature 322:572–574
Parenti LR (1980) A phylogenetic analysis of the land plants. Biol J Linn Soc 13:225–242
Pruchner D, Beckert S, Muhle H, Knoop V (2002) Divergent intron conservation in the mitochondrial nad2 gene: signatures for the three bryophyte classes (mosses, liverworts, and hornworts) and the lycophytes. J Mol Evol 55:265–271
Qiu Y-L, Cho Y, Cox JC, Palmer JD (1998) The gain of three mitochondrial introns identifies liverworts as the earliest land plants. Nature 394:671–674
Schljakov RN (1976) The Hepaticae of the North of the USSR. 1. Anthocerotophyta to Jungermanniidae (Metzgeriaceae). Nauka, Leningrad
Schuster RM (1977) The evolution and early diversification of the Hepaticae and Anthocerotae. In: Frey W, Hurka H, Oberwinkler F (eds) Beiträge zur Biologie der niederen Pflanzen. Fischer, Stuttgart, pp 107–115
Schuster RM (1984) Morphology, phylogeny, and classification of the Anthocerotae. In: Schuster RM (ed) New manual of bryology, vol II. Hattori Botanical Laboratory, Nichinan, Japan, pp 1071–1092
Schuster RM (1992) The Hepaticae and Anthocerotae of North America east of the hundredth meridian, vol VI. Columbia University Press, Chicago, pp i–xvii and 1–937
Sluiman HJ (1985) A cladistic evaluation of the lower and higher green plants (Viridiplantae). Plant Syst Evol 149:217–232
Soltis PS, Soltis DE, Wolf PG, Nickrent DL, Chaw SM, Chapman Rl (1999) The phylogeny of land plants inferred from 18S rDNA sequences: pushing the limits of rDNA signal? Mol Biol Evol 16:1774–1784
Stech M, Frey W (2001) CpDNA-relationship and classification of the Jungermanniopsida (Hepaticophytina, Bryophyta). Nova Hedwigia 72:45–58
Steinhauser S, Beckert S, Capesius I, Malek O, Knoop V (1999) Plant mitochondrial RNA editing—extreme in hornworts and dividing the liverworts? J Mol Evol 48:303–312
Stotler R, Crandall-Stotler B (1977) A checklist of the liverworts and hornworts of North America. Bryologist 80:405–428
Sugiura M, Miyata Y, Sugita M (2001) Structure of chloroplast genome of the moss Physcomitrella patens. Abstracts of the International Conference "MOSS 2001", symposium "Moss genomics", Okazaki, Japan, pp 42–43
Swofford DL (2002) PAUP*: phylogenetic analysis using parsimony (*and other methods), version 4.0b10. Sinauer, Sunderland, Mass.
Turmel M, Otis C, Lemieux C (2002) The chloroplast and mitochondrial genome sequences of the charophyte Chaetosphaeridium globosum: insights into the timing of events that restructured organelle DNAs within the green algal lineage that led to land plants. Proc Natl Acad Sci USA: 99:11275–11280
Umesono K, Ozeki H (1987) Chloroplast gene organization in plants. Trends Genet 3:281–287
Van de Peer Y, De Baere R, Cauwenberghs J, De Wachter R (1990) Evolution of green plants and their relationship with other photosynthetic eukaryotes as deduced from 5S ribosomal RNA sequences. Plant Syst Evol 170:85–96
Vaughn KC, Ligrone R, Owen HA, Hasegawa J, Campbell EO, Renzaglia KS, Monge-Najera J (1992) The anthocerote chloroplast: a review. New Phytol 120:169–190
Zuker M, Mathews DH, Turner DH (1999) Algorithms and thermodynamics for RNA secondary structure prediction: a practical guide. In: Barciszewski J, Clark BFC (eds) RNA biochemistry and biotechnology. NATO ASI Series, Kluwer, Dordrecht, pp 11–43
