Molecular characterizations of variable anisotropic Hardy spaces with applications to boundedness of Calderón–Zygmund operators

Jun Liu1
1School of Mathematics, China University of Mining and Technology, Xuzhou, People’s Republic of China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Almeida, V., Betancor, J.J., Rodríguez-Mesa, L.: Anisotropic Hardy-Lorentz spaces with variable exponents. Can. J. Math. 69(6), 1219–1273 (2017)

Almeida, A., Hästö, P.: Besov spaces with variable smoothness and integrability. J. Funct. Anal. 258(5), 1628–1655 (2010)

Barrios, B., Betancor, J.J.: Anisotropic weak Hardy spaces and wavelets. J. Funct. Spaces Appl. Art. ID 809121, 17 pp (2012)

Bownik, M., Li, B., Li, J.: Variable anisotropic singular integral operators. Preprint (2020); arXiv:2004.09707 [math.FA]

Bownik, M., Wang, L.-A.D.: A PDE characterization of anisotropic Hardy spaces. Preprint

Bownik, M.: Anisotropic Hardy spaces and wavelets. Mem. Am. Math. Soc. 164(781), vi+122pp (2003)

Bownik, M., Li, B., Yang, D., Zhou, Y.: Weighted anisotropic Hardy spaces and their applications in boundedness of sublinear operators. Indiana Univ. Math. J. 57(7), 3065–3100 (2008)

Calderón, A.-P., Torchinsky, A.: Parabolic maximal functions associated with a distribution. Adv. Math. 16, 1–64 (1975)

Cleanthous, G., Georgiadis, A.G., Nielsen, M.: Molecular decomposition of anisotropic homogeneous mixed-norm spaces with applications to the boundedness of operators. Appl. Comput. Harmon. Anal. 47(2), 447–480 (2019)

Cleanthous, G., Georgiadis, A.G., Nielsen, M.: Molecular decomposition and Fourier multipliers for holomorphic Besov and Triebel-Lizorkin spaces. Monatsh. Math. 188(3), 467–493 (2019)

Coifman, R.R., Weiss, G.: Extensions of Hardy spaces and their use in analysis. Bull. Am. Math. Soc. 83(4), 569–645 (1977)

Cruz-Uribe, D.V., Fiorenza, A.: Variable Lebesgue spaces. Foundations and harmonic analysis, applied and numerical harmonic analysis, Birkhäuser. Springer, Heidelberg (2013)

Cruz-Uribe, D., Wang, L.-A.D.: Variable Hardy spaces. Indiana Univ. Math. J. 63(2), 447–493 (2014)

Dekel, S., Han, Y., Petrushev, P.: Anisotropic meshless frames on $$\mathbb{R}^n$$. J. Fourier Anal. Appl. 15(5), 634–662 (2009)

Diening, L., Harjulehto, P., Hästö, P., R$$\mathring{\rm u}$$žička, M.: Lebesgue and Sobolev spaces with variable exponents. Lecture Notes in Math. 2017, Springer, Heidelberg (2011)

Diening, L., Hästö, P., Roudenko, S.: Function spaces of variable smoothness and integrability. J. Funct. Anal. 256(6), 1731–768 (2009)

Georgiadis, A.G., Kerkyacharian, G., Kyriazis, G., Petrushev, P.: Atomic and molecular decomposition of homogeneous spaces of distributions associated to non-negative self-adjoint operators. J. Fourier Anal. Appl. 25(6), 3259–3309 (2019)

Grafakos, L., Torres, R.H.: Pseudodifferential operators with homogeneous symbols. Michigan Math. J. 46(2), 261–269 (1999)

Han, Y., Lee, M.-Y., Lin, C.-C.: Atomic decomposition and boundedness of operators on weighted Hardy spaces. Can. Math. Bull. 55(2), 303–314 (2012)

Huang, L., Liu, J., Yang, D., Yuan, W.: Atomic and Littlewood-Paley characterizations of anisotropic mixed-norm Hardy spaces and their applications. J. Geom. Anal. 29(3), 1991–2067 (2019)

Jakab, T., Mitrea, M.: Parabolic initial boundary value problems in nonsmooth cylinders with data in anisotropic Besov spaces. Math. Res. Lett. 13(5–6), 825–831 (2006)

Jiao, Y., Zuo, Y., Zhou, D., Wu, L.: Variable Hardy-Lorentz spaces $$H^{p(\cdot ), q}(\mathbb{R}^n)$$. Math. Nachr. 292(2), 309–349 (2019)

Kempka, H., Vybíral, J.: Lorentz spaces with variable exponents. Math. Nachr. 287(8–9), 938–954 (2014)

Lee, M.-Y., Lin, C.-C.: The molecular characterization of weighted Hardy spaces. J. Funct. Anal. 188(2), 442–460 (2002)

Liao, M., Li, J., Li Bo, Li, Ba.: A new molecular characterization of diagonal anisotropic Musielak–Orlicz Hardy spaces, Bull. Sci. Math. (to appear)

Liu, J., Haroske, D.D., Yang, D.: New molecular characterizations of anisotropic Musielak-Orlicz Hardy spaces and their applications. J. Math. Anal. Appl. 475(2), 1341–1366 (2019)

Liu, X., Qiu, X., Li, B.: Molecular characterization of anisotropic variable Hardy-Lorentz spaces. Tohoku Math. J. (2) 72(2), 211–233 (2020)

Liu, J., Weisz, F., Yang, D., Yuan, W.: Variable anisotropic Hardy spaces and their applications. Taiwanese J. Math. 22(5), 1173–1216 (2018)

Liu, J., Yang, D., Yuan, W.: Anisotropic Hardy-Lorentz spaces and their applications. Sci. China Math. 59(9), 1669–1720 (2016)

Liu, J., Yang, D., Yuan, W.: Anisotropic variable Hardy-Lorentz spaces and their real interpolation. J. Math. Anal. Appl. 456(1), 356–393 (2017)

Li, B., Yang, D., Yuan, W.: Anisotropic Hardy spaces of Musielak-Orlicz type with applications to boundedness of sublinear operators. Sci World J 2014, 19 (2014) (Article ID 306214)

Lu, S.-Z.: Four lectures on real $$H^p$$ spaces. World Scientific Publishing Co., Inc, River Edge (1995)

Nakai, E., Sawano, Y.: Hardy spaces with variable exponents and generalized Campanato spaces. J. Funct. Anal. 262(9), 3665–3748 (2012)

Sawano, Y.: Atomic decompositions of Hardy spaces with variable exponents and its application to bounded linear operator. Integral Equ. Oper. Theory 77(1), 123–148 (2013)

Stein, E.M.: Harmonic analysis: Real-Variable Methods, orthogonality, and oscillatory integrals. Princeton mathematical series 43, monographs in harmonic analysis III. Princeton University Press, Princeton (1993)

Taibleson, M.H., Weiss, G.: The molecular characterization of certain Hardy spaces. In: Representation theorems for Hardy spaces, pp. 67–149, Astérisque, 77, Soc. Math. France, Paris (1980)

Xu, J.: Variable Besov and Triebel-Lizorkin spaces. Ann. Acad. Sci. Fenn. Math. 33(2), 511–522 (2008)

Yang, D., Zhuo, C., Nakai, E.: Characterizations of variable exponent Hardy spaces via Riesz transforms. Rev. Mat. Complut. 29(2), 245–270 (2016)

Yan, X., Yang, D., Yuan, W., Zhuo, C.: Variable weak Hardy spaces and thier applications. J. Funct. Anal. 271(10), 2822–2887 (2016)

Zhuo, C., Sawano, Y., Yang, D.: Hardy spaces with variable exponents on RD-spaces and applications. Dissertationes Math. (Rozprawy Mat.) 520, 1–74 (2016)

Zhuo, C., Yang, D., Yuan, W.: Interpolation between $$H^{p(\cdot )}({\mathbb{R}^n})$$ and $$L^{\infty }(\mathbb{R}^n)$$: real method. J. Geom. Anal. 28(3), 2288–2311 (2018)