Molecular characterization of superoxide dismutase and catalase genes, and the induction of antioxidant genes under the zinc oxide nanoparticle-induced oxidative stress in air-breathing magur catfish (Clarias magur)

Fish Physiology and Biochemistry - Tập 47 Số 6 - Trang 1909-1932 - 2021
Debaprasad Koner1, Bodhisattwa Banerjee1, Anita Kumari1, Aquisha S. Lanong1, Revelbornstar Snaitang1, Nirmalendu Saha1
1Biochemical Adaptation Laboratory, Department of Zoology, North-Eastern Hill University, Shillong, India

Tóm tắt

Từ khóa


Tài liệu tham khảo

Afifi M, Saddick S, Abu Zinada OA (2016) Toxicity of silver nanoparticles on the brain of Oreochromis niloticus and Tilapia zillii. Saudi J Biol Sci 23:754–760. https://doi.org/10.1016/j.sjbs.2016.06.008

Aitken RJ, Chaudhry MQ, Boxall ABA, Hull M (2006) Manufacture and use of nanomaterials: current status in the UK and global trends. Occup Med (chic Ill) 56:300–306. https://doi.org/10.1093/occmed/kql051

Banerjee B, Koner D, Hasan R et al (2019) Transcriptome analysis reveals novel insights in air-breathing magur catfish (Clarias magur) in response to high environmental ammonia. Gene 703:35–49. https://doi.org/10.1016/j.gene.2019.04.009

Banerjee B, Koner D, Lal P, Saha N (2017) Unique mitochondrial localization of arginase 1 and 2 in hepatocytes of air-breathing walking catfish, Clarias batrachus and their differential expression patterns under hyper-ammonia stress. Gene 622:13–22. https://doi.org/10.1016/j.gene.2017.04.025

Barrett LW, Fletcher S, Wilton SD (2012) Regulation of eukaryotic gene expression by the untranslated gene regions and other non-coding elements. Cell Mol Life Sci 69:3613–3634. https://doi.org/10.1007/s00018-012-0990-9

Beers RF, Sizer IW (1952) A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J Biol Chem 195:133–140

Benkert P, Biasini M, Schwede T (2011) Toward the estimation of the absolute quality of individual protein structure models. Bioinforma 27:343–350. https://doi.org/10.1093/bioinformatics/btq662

Birben E, Sahiner UM, Sackesen C et al (2012) Oxidative stress and antioxidant defense. World Allergy Organ J 5:9–19. https://doi.org/10.1097/WOX.0b013e3182439613

Blinova I, Ivask A, Heinlaan M et al (2010) Ecotoxicity of nanoparticles of CuO and ZnO in natural water. Environ Pollut 158:41–47. https://doi.org/10.1016/j.envpol.2009.08.017

Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. https://doi.org/10.1016/0003-2697(76)90527-3

Buerki-Thurnherr T, Xiao L, Diener L et al (2013) In vitro mechanistic study towards a better understanding of ZnO nanoparticle toxicity. Nanotoxicology 7:402–416. https://doi.org/10.3109/17435390.2012.666575

Cazenave J, Ale A, Bacchetta C, Rossi AS (2019) Nanoparticles toxicity in fish models. Curr Pharm Des 25:3927–3942

Charlesworth A, Wilczynska A, Thampi P et al (2006) Musashi regulates the temporal order of mRNA translation during Xenopus oocyte maturation. EMBO J 25:2792–2801. https://doi.org/10.1038/sj.emboj.7601159

Chiu DTY, Stults FH, Tappel AL (1976) Purification and properties of rat lung soluble glutathione peroxidase. Biochim Biophys Acta - Enzymol 445:558–566. https://doi.org/10.1016/0005-2744(76)90110-8

Cho YS, Lee SY, Bang IC et al (2009) Genomic organization and mRNA expression of manganese superoxide dismutase (Mn-SOD) from Hemibarbus mylodon (Teleostei, Cypriniformes). Fish Shellfish Immunol 27:571–576. https://doi.org/10.1016/j.fsi.2009.07.003

Choi JS, Kim RO, Yoon S, Kim WK (2016) Developmental toxicity of zinc oxide nanoparticles to zebrafish (Danio rerio): A transcriptomic analysis. PLoS ONE 11:e0160763. https://doi.org/10.1371/journal.pone.0160763

Choudhury MG, Kumari S, Das KB, Saha N (2018) Lipopolysaccharide causes NFĸB-mediated induction of inducible nitric oxide synthase gene and more production of nitric oxide in air-breathing catfish, Clarias magur (Hamilton). Gene 658:18–27. https://doi.org/10.1016/j.gene.2018.03.018

Choudhury MG, Saha N (2012) Influence of environmental ammonia on the production of nitric oxide and expression of inducible nitric oxide synthase in the freshwater air-breathing catfish (Heteropneustes fossilis). Aquat Toxicol 116–117:43–53. https://doi.org/10.1016/j.aquatox.2012.03.006

Cong Y, Jin F, Wang J, Mu J (2017) The embryotoxicity of ZnO nanoparticles to marine medaka, Oryzias melastigma. Aquat Toxicol 185:11–18. https://doi.org/10.1016/j.aquatox.2017.01.006

de Castro E, Sigrist CJA, Gattiker A et al (2006) ScanProsite: detection of PROSITE signature matches and ProRule-associated functional and structural residues in proteins. Nucleic Acids Res 34:W362–W365. https://doi.org/10.1093/nar/gkl124

DeLeve LD, Kaplowitz N (1991) Glutathione metabolism and its role in hepatotoxicity. Pharmacol Ther 52:287–305. https://doi.org/10.1016/0163-7258(91)90029-L

Dorval J (2003) Role of glutathione redox cycle and catalase in defense against oxidative stress induced by endosulfan in adrenocortical cells of rainbow trout (Oncorhynchus mykiss). Toxicol Appl Pharmacol 192:191–200. https://doi.org/10.1016/S0041-008X(03)00281-3

Ellman GL (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82:70–77. https://doi.org/10.1016/0003-9861(59)90090-6

Fu PP, Xia Q, Hwang HM et al (2014) Mechanisms of nanotoxicity: generation of reactive oxygen species. J Food Drug Anal 22:64–75. https://doi.org/10.1016/j.jfda.2014.01.005

Fukasawa Y, Tsuji J, Fu SC et al (2015) MitoFates: improved prediction of mitochondrial targeting sequences and their cleavage sites. Mol Cell Proteomics 14:1113–1126. https://doi.org/10.1074/mcp.M114.043083

Gasteiger E, Hoogland C, Gattiker A et al (2005) Protein identification and analysis tools on the ExPASy server. In: Walker J (ed) The proteomics protocols handbook SE - 52. Humana Press, Totowa, NJ, pp 571–607

Guan R, Kang T, Lu F et al (2012) Cytotoxicity, oxidative stress, and genotoxicity in human hepatocyte and embryonic kidney cells exposed to ZnO nanoparticles. Nanoscale Res Lett 7:602. https://doi.org/10.1186/1556-276X-7-602

Habig WH, Pabst MJ, Jakoby WB (1974) Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. J Biol Chem 249:7130–7139

Halliwell B (1999) Antioxidant defence mechanisms: from the beginning to the end (of the beginning). Free Radic Res 31:261–272. https://doi.org/10.1080/10715769900300841

Halvorsen M, Martin JS, Broadaway S, Laederach A (2010) Disease-associated mutations that alter the RNA structural ensemble. PLoS Genet 6:e1001074. https://doi.org/10.1371/journal.pgen.1001074

Handy RD, Al-Bairuty G, Al-Jubory A et al (2011) Effects of manufactured nanomaterials on fishes: a target organ and body systems physiology approach. J Fish Biol 79:821–853. https://doi.org/10.1111/j.1095-8649.2011.03080.x

Handy RD, Owen R, Valsami-Jones E (2008) The ecotoxicology of nanoparticles and nanomaterials: Current status, knowledge gaps, challenges, and future needs. Ecotoxicology 17:315–325. https://doi.org/10.1007/s10646-008-0206-0

Hanna SK, Miller RJ, Muller EB et al (2013) Impact of engineered zinc oxide nanoparticles on the individual performance of Mytilus galloprovincialis. PLoS ONE 8:e61800. https://doi.org/10.1371/journal.pone.0061800

Hansen MN, Jensen FB (2010) Nitric oxide metabolites in goldfish under normoxic and hypoxic conditions. J Exp Biol 213:3593–3602. https://doi.org/10.1242/jeb.048140

Hao L, Chen L (2012) Oxidative stress responses in different organs of carp (Cyprinus carpio) with exposure to ZnO nanoparticles. Ecotoxicol Environ Saf 80:103–110. https://doi.org/10.1016/j.ecoenv.2012.02.017

Hasan R, Koner D, Khongmawloh E, Saha N (2020) Induction of nitric oxide synthesis a strategy to defend against high environmental ammonia induced oxidative stress in primary hepatocytes of air breathing catfish Clarias magur. J Exp Biol 223:jeb219626. https://doi.org/10.1242/jeb.219626

Holmgren A, Bjornstedt M (1995) Thioredoxin and thioredoxin reductase. In: Methods in enzymology. United States, pp 199–208

Kahru A, Dubourguier HC (2010) From ecotoxicology to nanoecotoxicology. Toxicol 269:105–119. https://doi.org/10.1016/j.tox.2009.08.016

Kanzok SM (2001) Substitution of the thioredoxin system for glutathione reductase in Drosophila melanogaster. Sci 291:643–646. https://doi.org/10.1126/science.291.5504.643

Kao YY, Chiung YM, Chen YC et al (2012) Zinc oxide nanoparticles interfere with zinc ion homeostasis to cause cytotoxicity. Toxicol Sci 125:462–472. https://doi.org/10.1093/toxsci/kfr319

Kaya H, Aydin F, Gürkan M et al (2015) Effects of zinc oxide nanoparticles on bioaccumulation and oxidative stress in different organs of tilapia (Oreochromis niloticus). Environ Toxicol Pharmacol 40:936–947. https://doi.org/10.1016/j.etap.2015.10.001

Kaya H, Aydın F, Gürkan M et al (2016) A comparative toxicity study between small and large size zinc oxide nanoparticles in tilapia (Oreochromis niloticus): organ pathologies, osmoregulatory responses and immunological parameters. Chemosphere 144:571–582. https://doi.org/10.1016/j.chemosphere.2015.09.024

Knowles RG, Salter M (1998) Measurement of NOS activity by conversion of radiolabeled arginine to citrulline using ion-exchange separation. In: Titheradge M (ed) Nitric Oxide Protocols. Humana Press, New Jersey, pp 67–74

Kohen R, Nyska A (2002) Oxidation of biological systems: oxidative stress phenomena, antioxidants, redox reactions, and methods for their quantification. Toxicol Pathol 30:620–650. https://doi.org/10.1080/0192623029016672

Koner D, Banerjee B, Hasan R, Saha N (2019) Antioxidant activity of endogenously produced nitric oxide against the zinc oxide nanoparticle-induced oxidative stress in primary hepatocytes of air-breathing catfish, Clarias magur. Nitric Oxide - Biol Chem 84:7–15. https://doi.org/10.1016/j.niox.2018.12.010

Kumari S, Choudhury MG, Saha N (2019) Hyper-ammonia stress causes induction of inducible nitric oxide synthase gene and more production of nitric oxide in air-breathing magur catfish, Clarias magur (Hamilton). Fish Physiol Biochem 45:907–920. https://doi.org/10.1007/s10695-018-0593-y

Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Crystallogr 26:283–291

Le SY, Maizel JV (1997) A common RNA structural motif involved in the internal initiation of translation of cellular mRNAs. Nucleic Acids Res 25:362–369. https://doi.org/10.1093/nar/25.2.362

Lefort V, Longueville JE, Gascuel O (2017) SMS: smart model selection in PhyML. Mol Biol Evol 34:2422–2424. https://doi.org/10.1093/molbev/msx149

Lemoine F, Correia D, Lefort V et al (2019) NGPhylogeny.fr: New generation phylogenetic services for non-specialists. Nucleic Acids Res 47:W260–W265. https://doi.org/10.1093/nar/gkz303

Lin CT, Tseng WC, Hsiao NW et al (2009) Characterization, molecular modelling and developmental expression of zebrafish manganese superoxide dismutase. Fish Shellfish Immunol 27:318–324. https://doi.org/10.1016/j.fsi.2009.05.015

Lin D, Tian X, Wu F, Xing B (2010) Fate and transport of engineered nanomaterials in the environment. J Environ Qual 39:1896–1908. https://doi.org/10.2134/jeq2009.0423

Liu H, He J, Chi C, Gu Y (2015) Identification and analysis of icCu/Zn-SOD, Mn-SOD and ecCu/Zn-SOD in superoxide dismutase multigene family of Pseudosciaena crocea. Fish Shellfish Immunol 43:491–501. https://doi.org/10.1016/j.fsi.2015.01.032

Liu Z, Liu S, Yao J et al (2016) The channel catfish genome sequence provides insights into the evolution of scale formation in teleosts. Nat Commun 7:11757. https://doi.org/10.1038/ncomms11757

Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT Method. Methods 25:402–408. https://doi.org/10.1006/meth.2001.1262

Lushchak VI (2011) Environmentally induced oxidative stress in aquatic animals. Aquat Toxicol 101:13–30. https://doi.org/10.1016/j.aquatox.2010.10.006

Lushchak VI (2012) Glutathione homeostasis and functions: potential targets for medical interventions. J Amino Acids 2012:1–26. https://doi.org/10.1155/2012/736837

Lushchak VI, Lushchak LP, Mota AA, Hermes-Lima M (2001) Oxidative stress and antioxidant defenses in goldfish Carassius auratus during anoxia and reoxygenation. Am J Physiol - Regul Integr Comp Physiol 280:100–107. https://doi.org/10.1152/ajpregu.2001.280.1.r100

Marchler-Bauer A, Lu S, Anderson JB et al (2011) CDD: a conserved domain database for the functional annotation of proteins. Nucleic Acids Res 39:D225–D229. https://doi.org/10.1093/nar/gkq1189

Moore RB, Kauffman NJ (1970) Simultaneous determination of citrulline and urea using diacetylmonoxime. Anal Biochem 33:263–272. https://doi.org/10.1016/0003-2697(70)90296-4

Moretti S, Armougom F, Wallace IM et al (2007) The M-Coffee web server: a meta-method for computing multiple sequence alignments by combining alternative alignment methods. Nucleic Acids Res 35:W645–W648. https://doi.org/10.1093/nar/gkm333

Paoletti F, Aldinucci D, Mocali A, Caparrini A (1986) A sensitive spectrophotometric method for the determination of superoxide dismutase activity in tissue extracts. Anal Biochem 154:536–541. https://doi.org/10.1016/0003-2697(86)90026-6

Pesole G, Liuni S, Grillo G et al (2000) UTRdb and UTRsite: specialized databases of sequences and functional elements of 5′ and 3′ untranslated regions of eukaryotic mRNAs. Nucleic Acids Res 28:193–196. https://doi.org/10.1093/nar/28.1.193

Prieto AI, Jos A, Pichardo S et al (2009) Time-dependent protective efficacy of Trolox (vitamin E analog) against microcystin-induced toxicity in tilapia (Oreochromis niloticus). Environ Toxicol 24:563–579. https://doi.org/10.1002/tox.20458

Ray PC, Yu H, Fu PP (2009) Toxicity and environmental risks of nanomaterials: challenges and future needs. J Environ Sci Heal Part C 27:1–35. https://doi.org/10.1080/10590500802708267

Rio DC, Ares M, Hannon GJ, Nilsen TW (2010) Purification of RNA using TRIzol (TRI Reagent). Cold Spring Harb Protoc 2010:pdb.prot5439. https://doi.org/10.1101/pdb.prot5439

Saha N, Ratha BK (1998) Ureogenesis in Indian air-breathing teleosts: adaptation to environmental constraints. Comp Biochem Physiol Part A Mol Integr Physiol 120(2):195–208. https://doi.org/10.1016/S1095-6433(98)00026-9

Saha N, Ratha BK (2007) Functional ureogenesis and adaptation to ammonia metabolism in Indian freshwater air-breathing catfishes. Fish Physiol Biochem 33:283–295. https://doi.org/10.1007/s10695-007-9172-3

Sakurai A, Nishimoto M, Himeno S et al (2005) Transcriptional regulation of thioredoxin reductase 1 expression by cadmium in vascular endothelial cells: role of NF-E2-related factor-2. J Cell Physiol 203:529–537. https://doi.org/10.1002/jcp.20246

Sarkar S, Mukherjee S, Chattopadhyay A, Bhattacharya S (2017) Differential modulation of cellular antioxidant status in zebrafish liver and kidney exposed to low dose arsenic trioxide. Ecotoxicol Environ Saf 135:173–182. https://doi.org/10.1016/j.ecoenv.2016.09.025

Schwede T, Kopp J, Guex N, Peitsch MC (2003) SWISS-MODEL: an automated protein homology-modeling server. Nucleic Acids Res 31:3381–3385. https://doi.org/10.1093/nar/gkg520

Scown TM, Van Aerle R, Tyler CR (2010) Review: do engineered nanoparticles pose a significant threat to the aquatic environment. Crit Rev Toxicol 40:653–670. https://doi.org/10.3109/10408444.2010.494174

Sessa WC, Pritchard K, Seyedi N et al (1994) Chronic exercise in dogs increases coronary vascular nitric oxide production and endothelial cell nitric oxide synthase gene expression. Circ Res 74:349–353

Shahzad K, Khan MN, Jabeen F et al (2019) Toxicity of zinc oxide nanoparticles (ZnO-NPs) in tilapia (Oreochromis mossambicus): tissue accumulation, oxidative stress, histopathology and genotoxicity. Int J Environ Sci Technol 16:1973–1984. https://doi.org/10.1007/s13762-018-1807-7

Shaw BJ, Handy RD (2011) Physiological effects of nanoparticles on fish: a comparison of nanometals versus metal ions. Environ Int 37:1083–1097. https://doi.org/10.1016/j.envint.2011.03.009

Shin YJ, Lee WM, Il KJ, An YJ (2018) Dissolution of zinc oxide nanoparticles in exposure media of algae, daphnia, and fish embryos for nanotoxicological testing. Chem Ecol 34:229–240. https://doi.org/10.1080/02757540.2017.1405943

Sigrist CJA, Cerutti L, de Castro E et al (2010) PROSITE, a protein domain database for functional characterization and annotation. Nucleic Acids Res 38:D161–D166

Sinha AK, Zinta G, AbdElgawad H et al (2015) High environmental ammonia elicits differential oxidative stress and antioxidant responses in five different organs of a model estuarine teleost (Dicentrarchus labrax). Comp Biochem Physiol Part C Toxicol Pharmacol 174–175:21–31. https://doi.org/10.1016/j.cbpc.2015.06.002

Smita S, Gupta SK, Bartonova A et al (2012) Nanoparticles in the environment: assessment using the causal diagram approach. Environ Heal A Glob Access Sci Source 11:S13. https://doi.org/10.1186/1476-069X-11-S1-S13

Talavera G, Castresana J, Kjer K et al (2007) Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst Biol 56:564–577

Tan SX, Greetham D, Raeth S et al (2010) The thioredoxin-thioredoxin reductase system can function in vivo as an alternative system to reduce oxidized glutathione in Saccharomyces cerevisiae. J Biol Chem 285:6118–6126. https://doi.org/10.1074/jbc.M109.062844

Townsend DM, Tew KD, Tapiero H (2003) The importance of glutathione in human disease. Biomed Pharmacother 57:145–155. https://doi.org/10.1016/S0753-3322(03)00043-X

Umasuthan N, Bathige SDNK, Thulasitha WS et al (2014) Characterization of rock bream (Oplegnathus fasciatus) cytosolic Cu/Zn superoxide dismutase in terms of molecular structure, genomic arrangement, stress-induced mRNA expression and antioxidant function. Comp Biochem Physiol Part - B Biochem Mol Biol 176:18–33. https://doi.org/10.1016/j.cbpb.2014.07.004

Valavanidis A, Vlahogianni T, Dassenakis M, Scoullos M (2006) Molecular biomarkers of oxidative stress in aquatic organisms in relation to toxic environmental pollutants. Ecotoxicol Environ Saf 64:178–189. https://doi.org/10.1016/j.ecoenv.2005.03.013

Wang Y, Osatomi K, Nagatomo Y et al (2011) Purification, molecular cloning, and some properties of a manganese-containing superoxide dismutase from Japanese flounder (Paralichthys olivaceus). Comp Biochem Physiol Part B Biochem Mol Biol 158:289–296. https://doi.org/10.1016/j.cbpb.2010.12.007

Wigginton NS, Haus KL, Hochella MF (2007) Aquatic environmental nanoparticles. J Environ Monit 9:1306–1316. https://doi.org/10.1039/b712709j

Wong SWY, Leung PTY, Djurišić AB, Leung KMY (2010) Toxicities of nano zinc oxide to five marine organisms: influences of aggregate size and ion solubility. Anal Bioanal Chem 396:609–618. https://doi.org/10.1007/s00216-009-3249-z

Xiong D, Fang T, Yu L et al (2011) Effects of nano-scale TiO2, ZnO and their bulk counterparts on zebrafish: acute toxicity, oxidative stress and oxidative damage. Sci Total Environ 409:1444–1452. https://doi.org/10.1016/j.scitotenv.2011.01.015

Yang Y, Song Z, Wu W et al (2020) ZnO quantum dots induced oxidative stress and apoptosis in HeLa and HEK-293T cell lines. Front Pharmacol 11:1–8. https://doi.org/10.3389/fphar.2020.00131

Ye J, Coulouris G, Zaretskaya I et al (2012) Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC Bioinformatics 13:134. https://doi.org/10.1186/1471-2105-13-134

Zelko IN, Mariani TJ, Folz RJ (2002) Superoxide dismutase multigene family: a comparison of the CuZn-SOD (SOD1), Mn-SOD (SOD2) and EC-SOD (SOD3) gene structures, evolution and expression. Free Radic Biol Med 33:337–349. https://doi.org/10.3828/rs.2012.10

Zhang Y, Nayak T, Hong H, Cai W (2013) Biomedical applications of zinc oxide nanomaterials. Curr Mol Med 13:1633–1645. https://doi.org/10.2174/1566524013666131111130058

Zhao Y, Xie P, Zhang X (2009) Oxidative stress response after prolonged exposure of domestic rabbit to a lower dosage of extracted microcystins. Environ Toxicol Pharmacol 27:195–199. https://doi.org/10.1016/j.etap.2008.10.005