Molecular characterization of a novel β-defensin isoform from the red-toothed trigger fish, Odonus niger (Ruppel, 1836)
Tóm tắt
The concern regarding a post-antibiotic era with increasing drug resistance by pathogens imposes the need to discover alternatives for existing antibiotics. Antimicrobial peptides (AMPs) with their versatile therapeutic properties are a group of promising molecules with curative potentials. These evolutionarily conserved molecules play important roles in the innate immune system of several organisms. The β-defensins are a group of cysteine rich cationic antimicrobial peptides that play an important role in the innate immune system by their antimicrobial activity against the invading pathogens. The present study deals with a novel β-defensin isoform from the red-toothed trigger fish, Odonus niger. Total RNA was isolated from the gills, cDNA was synthesized and the β-defensin isoform obtained by polymerase chain reaction was cloned and subjected to structural and functional characterization in silico. A β-defensin isoform could be detected from the gill mRNA of red-toothed trigger fish, Odonus niger. The cDNA encoded a 63 amino acid peptide, β-defensin, with a 20 amino acid signal sequence followed by 43 amino acid cationic mature peptide (On-Def) having a molecular weight of 5.214 kDa and theoretical pI of 8.89. On-Def possessed six highly conserved cysteine residues forming disulfide bonds between C1–C5, C2–C4, and C3–C6, typical of β-defensins. An anionic pro-region was observed prior to the β-defensin domain within the mature peptide. Clustal alignment and phylogenetic analyses revealed On-Def as a group 2 β-defensin. Furthermore, it shared some structural similarities and functional motifs with β-defensins from other organisms. On-Def was predicted to be non-hemolytic with anti-bacterial, anti-viral, anti-fungal, anti-cancer, and immunomodulatory potential. On-Def is the first report of a β-defensin from the red-toothed trigger fish, Odonus niger. The antimicrobial profile showed the potential for further studies as a suitable candidate for antimicrobial peptide therapeutics.
Tài liệu tham khảo
Lazzaro BP, Zasloff M, Rolff J (2020) Antimicrobial peptides: application informed by evolution. Science 368(6490):eaau5480. https://doi.org/10.1126/science.aau5480
Masso-Silva JA, Diamond G (2014) Antimicrobial peptides from fish. Pharmaceuticals 7(3):265–310. https://doi.org/10.3390/ph7030265
Tu J, Li D, Li Q, Zhang L, Zhu Q, Gaur U, Fan X, Xu H, Yao Y, Zhao X, Yang M (2015) Molecular evolutionary analysis of β-defensin peptides in vertebrates. Evol Bioinform Online 11:105–114. https://doi.org/10.4137/EBO.S25580
Zou J, Mercier C, Koussounadis A, Secombes C (2007) Discovery of multiple beta-defensin like homologues in teleost fish. Mol Immunol 44(4):638–647. https://doi.org/10.1016/j.molimm.2006.01.012
Chang CI, Chen LH, Hu YF, Wu CC, Tsai JM (2017) Determining the cleavage site for the mature antimicrobial peptide of Nile tilapia β-defensin using 2D electrophoresis, western blot, and mass spectrometry analysis. Fish Shellfish Immunol 62:41–46. https://doi.org/10.1016/j.fsi.2017.01.010
Wang G, Li J, Zou P, Xie H, Huang B, Nie P, Chang M (2012) Expression pattern, promoter activity and bactericidal property of β-defensin from the mandarin fish Siniperca chuatsi. Fish Shellfish Immunol 33(3):522–531. https://doi.org/10.1016/j.fsi.2012.06.003
Qi Z, Xu W, Meng F, Zhang Q, Chen C, Shao R (2016) Cloning and expression of β-defensin from soiny mullet (Liza haematocheila), with insights of its antibacterial mechanism. PLoS One 11(6):e0157544. https://doi.org/10.1371/journal.pone.0157544
Chen Y, Zhao H, Zhang X, Luo H, Xue X, Li Z, Yao B (2013) Identification, expression and bioactivity of Paramisgurnus dabryanus β-defensin that might be involved in immune defense against bacterial infection. Fish Shellfish Immunol 35(2):399–406. https://doi.org/10.1016/j.fsi.2013.04.049
Anooja VV, Anju MV, Athira PP, Neelima, Archana K, Radhakrishnan CK, Philip R (2020) Structural, functional and phylogenetic analysis of a beta defensin gene from the Whipfin Silverbiddy, Gerres filamentosus (Cuvier, 1829). Gene Rep 21:100805
Valero Y, Saraiva-Fraga M, Costas B, Guardiola FA (2020) Antimicrobial peptides from fish: beyond the fight against pathogens. Rev Aquacult 12(1):224–253. https://doi.org/10.1111/raq.12314
Torres AM, Kuchel PW (2004) The β-defensin-fold family of polypeptides. Toxicon 44(6):581–588. https://doi.org/10.1016/j.toxicon.2004.07.011
Zhao JG, Zhou L, Jin JY, Zhao Z, Lan J, Zhang YB, Zhang QY, Gui JF (2009) Antimicrobial activity-specific to Gram-negative bacteria and immune modulation-mediated NF-κB and Sp1 of a medaka β-defensin. Dev Comp Immunol 33(4):624–637. https://doi.org/10.1016/j.dci.2008.11.006
Nam BH, Moon JY, Kim YO, Kong HJ, Kim WJ, Lee SJ, Kim KK (2010) Multiple β-defensin isoforms identified in early developmental stages of the teleost Paralichthys olivaceus. Fish Shellfish Immunol 28(2):267–274. https://doi.org/10.1016/j.fsi.2009.11.004
Ruangsri J, Kitani Y, Kiron V, Lokesh J, Brinchmann MF, Karlsen BO, Fernandes JM (2013) A novel beta-defensin antimicrobial peptide in Atlantic cod with stimulatory effect on phagocytic activity. PLoS One 8(4):e62302. https://doi.org/10.1371/journal.pone.0062302
Cuesta A, Meseguer J, Esteban MÁ (2011) Molecular and functional characterization of the gilthead seabream β-defensin demonstrate its chemotactic and antimicrobial activity. Mol Immunol 48(12-13):1432–1438. https://doi.org/10.1016/j.molimm.2011.03.022
Falco A, Chico V, Marroqui L, Perez L, Coll JM, Estepa A (2008) Expression and antiviral activity of a β-defensin-like peptide identified in the rainbow trout (Oncorhynchus mykiss) EST sequences. Mol Immunol 45(3):757–765. https://doi.org/10.1016/j.molimm.2007.06.358
Guo M, Wei J, Huang X, Huang Y, Qin Q (2012) Antiviral effects of β-defensin derived from orange-spotted grouper (Epinephelus coioides). Fish Shellfish Immunol 32(5):828–838. https://doi.org/10.1016/j.fsi.2012.02.005
Jin JY, Zhou L, Wang Y, Li Z, Zhao JG, Zhang QY, Gui JF (2010) Antibacterial and antiviral roles of a fish β-defensin expressed both in pituitary and testis. PLoS One 5(12):e12883. https://doi.org/10.1371/journal.pone.0012883
Ruppel (1836) Neue Wirbelthierezu der Fauna von Abyssiniengehörig. Fische des Rothen Meeres. Siegmund Schmerber, Frankfurt am Main, pp 1–28
Ray D, Mohapatra A (2020) New record of five ornamental triggerfishes (Tetraodontiformes: Balistidae) from West Bengal coast, India
Armenteros JJA, Tsirigos KD, Sønderby CK, Petersen TN, Winther O, Brunak S et al (2019) SignalP 5.0 improves signal peptide predictions using deep neural networks. Nat Biotechnol 37(4):420–423. https://doi.org/10.1038/s41587-019-0036-z
Duckert P, Brunak S, Blom N (2004) Prediction of proprotein convertase cleavage sites. Protein Eng Des Sel 17(1):107–112. https://doi.org/10.1093/protein/gzh013
Letunic I, Bork P (2018) 20 years of the SMART protein domain annotation resource. Nucleic Acids Res 46(D1):D493–D496. https://doi.org/10.1093/nar/gkx922
Wang G, Li X, Wang Z (2016) APD3: the antimicrobial peptide database as a tool for research and education. Nucleic Acids Res 44(D1):D1087–D1093. https://doi.org/10.1093/nar/gkv1278
Gasteiger E, Hoogland C, Gattiker A, Wilkins MR, Appel RD, Bairoch A (2005) Protein identification and analysis tools on the ExPASy server. The Proteomics Protocols Handbook 571-607.
Waterhouse AM, Procter JB, Martin DM, Clamp M, Barton GJ (2009) Jalview Version 2--a multiple sequence alignment editor and analysis workbench. Bioinformatics (Oxford, England) 25(9):1189–1191. https://doi.org/10.1093/bioinformatics/btp033
Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Molecular Biol Evol 35(6):1547–1549. https://doi.org/10.1093/molbev/msy096
Wang Z, Zhao F, Peng J, Xu J (2010) Protein 8-class secondary structure prediction using conditional neural fields. In: 2010 IEEE international conference on bioinformatics and biomedicine (BIBM). IEEE, pp 109–114
Yang J, Zhang Y (2015) I-TASSER server: new development for protein structure and function predictions. Nucleic Acids Res 43(W1):W174–W181. https://doi.org/10.1093/nar/gkv342
Guex N, Peitsch MC (1997) SWISS-MODEL and the Swiss-Pdb Viewer: an environment for comparative protein modeling. Electrophoresis 18(15):2714–2723
Rousseau F, Schymkowitz J, Serrano L (2006) Protein aggregation and amyloidosis: confusion of the kinds? Curr Opin Struct Biol 16(1):118–126. https://doi.org/10.1016/j.sbi.2006.01.011
Fernandez-Escamilla AM, Rousseau F, Schymkowitz J, Serrano L (2004) Prediction of sequence-dependent and mutational effects on the aggregation of peptides and proteins. Nat Biotechnol 22(10):1302–1306. https://doi.org/10.1038/nbt1012
Linding R, Schymkowitz J, Rousseau F, Diella F, Serrano L (2004) A comparative study of the relationship between protein structure and beta-aggregation in globular and intrinsically disordered proteins. J Mol Biol 342(1):345–353. https://doi.org/10.1016/j.jmb.2004.06.088
Conchillo-Solé O, de Groot NS, Avilés FX, Vendrell J, Daura X, Ventura S (2007) AGGRESCAN: a server for the prediction and evaluation of “hot spots” of aggregation in polypeptides. BMC Bioinformatics 8(1):65. https://doi.org/10.1186/1471-2105-8-65
Meher PK, Sahu TK, Saini V, Rao AR (2017) Predicting antimicrobial peptides with improved accuracy by incorporating the compositional, physico-chemical and structural features into Chou’s general PseAAC. Sci Rep 7(1):1–12
Tyagi A, Kapoor P, Kumar R, Chaudhary K, Gautam A, Raghava GPS (2013) In silico models for designing and discovering novel anticancer peptides. Sci Rep 3(1):2984. https://doi.org/10.1038/srep02984
Gautam A, Chaudhary K, Kumar R, Sharma A, Kapoor P, Tyagi A, Raghava GP (2013) In silico approaches for designing highly effective cell penetrating peptides. J Transl Med 11(1):74. https://doi.org/10.1186/1479-5876-11-74
Gautam A, Chaudhary K, Kumar R, Raghava GPS (2015) Computer-aided virtual screening and designing of cell-penetrating peptides. In: Cell-penetrating peptides. Humana Press, New York, pp 59–69
Manavalan B, Shin TH, Kim MO, Lee G (2018) PIP-EL: a new ensemble learning method for improved proinflammatory peptide predictions. Front Immunol 9:1783. https://doi.org/10.3389/fimmu.2018.01783
Nagpal G, Chaudhary K, Agrawal P, Raghava GP (2018) Computer-aided prediction of antigen presenting cell modulators for designing peptide-based vaccine adjuvants. J Transl Med 16(1):181. https://doi.org/10.1186/s12967-018-1560-1
Chaudhary K, Kumar R, Singh S, Tuknait A, Gautam A, Mathur D et al (2016) A web server and mobile app for computing hemolytic potency of peptides. Sci Rep 6(1):1–13
Varshavsky A (1997) The N-end rule pathway of protein degradation. Genes Cells 2(1):13–28. https://doi.org/10.1046/j.1365-2443.1997.1020301.x
Gomez D, Sunyer JO, Salinas I (2013) The mucosal immune system of fish: the evolution of tolerating commensals while fighting pathogens. Fish Shellfish Immunol 35(6):1729–1739. https://doi.org/10.1016/j.fsi.2013.09.032
Beckloff N, Diamond G (2008) Computational analysis suggests beta-defensins are processed to mature peptides by signal peptidase. Protein Pept Lett 15(5):536–540. https://doi.org/10.2174/092986608784567618
Valore EV, Martin E, Harwig SS, Ganz T (1996) Intramolecular inhibition of human defensin HNP-1 by its propiece. J Clin Investig 97(7):1624–1629. https://doi.org/10.1172/JCI118588
Uversky VN (2019) Intrinsically disordered proteins and their “mysterious”(meta) physics. Front Phys 7:10. https://doi.org/10.3389/fphy.2019.00010
Li T, Guo F, Wang Q, Fang H, Li Z, Wang D, Wang H (2015) N-terminus three residues deletion mutant of human beta-defensin 3 with remarkably enhanced salt-resistance. PLoS One 10(2):e0117913. https://doi.org/10.1371/journal.pone.0117913
Guruprasad K, Reddy BVB, Pandit MW (1990) Correlation between stability of a protein and its dipeptide composition: a novel approach for predicting in vivo stability of a protein from its primary sequence. Protein Eng 4(2):155–161. https://doi.org/10.1093/protein/4.2.155
Ikai AJ (1980) Thermostability and aliphatic index of globular proteins. J Biochem 88(6):1895–1898
Sivakumar K, Balaji S, Gangaradhakrishna N (2007) In silico characterization of antifreeze proteins using computational tools and servers. J Chem Sci 119(5):571–579. https://doi.org/10.1007/s12039-007-0072-y
Boman HG (2003) Antibacterial peptides: basic facts and emerging concepts. J Intern Med 254(3):197–215. https://doi.org/10.1046/j.1365-2796.2003.01228.x
Schutte BC, Mitros JP, Bartlett JA, Walters JD, Jia HP, Welsh MJ, Casavant TL, McCray PB Jr (2002) Discovery of five conserved beta -defensin gene clusters using a computational search strategy. Proc Natl Acad Sci U S A 99(4):2129–2133. https://doi.org/10.1073/pnas.042692699
Casadei E, Wang T, Zou J, Vecino JLG, Wadsworth S, Secombes CJ (2009) Characterization of three novel β-defensin antimicrobial peptides in rainbow trout (Oncorhynchus mykiss). Mol Immunol 46(16):3358–3366. https://doi.org/10.1016/j.molimm.2009.07.018
Seo ES, Blaum BS, Vargues T, De Cecco M, Deakin JA, Lyon M, Barran PE, Campopiano DJ, Uhrín D (2010) Interaction of human β-defensin 2 (HBD2) with glycosaminoglycans. Biochemistry 49(49):10486–10495. https://doi.org/10.1021/bi1011749
Järvå M, Phan TK, Lay FT, Caria S, Kvansakul M, Hulett MD (2018) Human β-defensin 2 kills Candida albicans through phosphatidylinositol 4, 5-bisphosphate–mediated membrane permeabilization. Sci Adv 4(7):eaat0979
Lehrer RI, Ganz T (2002) Defensins of vertebrate animals. Curr Opin Immunol 14(1):96–102. https://doi.org/10.1016/S0952-7915(01)00303-X
Zhu S, Gao B (2013) Evolutionary origin of β-defensins. Dev Comp Immunol 39(1-2):79–84. https://doi.org/10.1016/j.dci.2012.02.011
Wu ZB, Hoover DM, Yang D, Boulègue C, Santamaria F, Oppenheim JJ, Lubkowski J, Lu WY (2003) Engineering disulfide bridges 2 to dissect antimicrobial and chemotactic activities of human beta-defensin 3. Proc Natl Acad Sci USA 100(15):8880–8885. https://doi.org/10.1073/pnas.1533186100
Bauer F, Schweimer K, Klüver E, Conejo-Garcia JR, Forssmann WG, Rösch P et al (2001) Structure determination of human and murine β-defensins reveals structural conservation in the absence of significant sequence similarity. Protein Sci 10(12):2470–2479. https://doi.org/10.1110/ps.ps.24401
Hoover DM, Wu Z, Tucker K, Lu W, Lubkowski J (2003) Antimicrobial characterization of human β-defensin 3 derivatives. Antimicrob Agents Chemother 47(9):2804–2809. https://doi.org/10.1128/AAC.47.9.2804-2809.2003
Sharma H, Nagaraj R (2015) Human β-defensin 4 with non-native disulfide bridges exhibit antimicrobial activity. PLoS One 10(3):e0119525. https://doi.org/10.1371/journal.pone.0119525
Klüver E, Schulz-Maronde S, Scheid S, Meyer B, Forssmann WG, Adermann K (2005) Structure− activity relation of human β-defensin 3: influence of disulfide bonds and cysteine substitution on antimicrobial activity and cytotoxicity. Biochemistry 44(28):9804–9816. https://doi.org/10.1021/bi050272k
Zimmermann GR, Legault P, Selsted ME, Pardi A (1995) Solution structure of bovine neutrophil. beta.-defensin-12: the peptide fold of the. beta.-defensins is identical to that of the classical defensins. Biochemistry 34(41):13663–13671. https://doi.org/10.1021/bi00041a048
Hill CP, Yee J, Selsted ME, Eisenberg D (1991) Crystal structure of defensin HNP-3, an amphiphilic dimer: mechanisms of membrane permeabilization. Science 251(5000):1481–1485. https://doi.org/10.1126/science.2006422
Xie C, Prahl A, Ericksen B, Wu Z, Zeng P, Li X, Lu WY, Lubkowski J, Lu W (2005) Reconstruction of the conserved beta-bulge in mammalian defensins using D-amino acids. J Biol Chem 280(38):32921–32929. https://doi.org/10.1074/jbc.M503084200
Krishnakumari V, Sharadadevi A, Singh S, Nagaraj R (2003) Single disulfide and linear analogues corresponding to the carboxy-terminal segment of bovine β-defensin-2: effects of introducing the β-hairpin nucleating sequence D-Pro-Gly on antibacterial activity and biophysical properties. Biochemistry 42(31):9307–9315. https://doi.org/10.1021/bi034403y
Schmidt NW, Mishra A, Lai GH, Davis M, Sanders LK, Tran D, Selsted ME (2011) Criterion for amino acid composition of defensins and antimicrobial peptides based on geometry of membrane destabilization. J Am Chem Soc 133(17):6720–6727. https://doi.org/10.1021/ja200079a
Schmidt NW, Tai KP, Kamdar K, Mishra A, Lai GH, Zhao K, Ouellette AJ, Wong GC (2012) Arginine in α-defensins differential effects on bactericidal activity correspond to geometry of membrane curvature generation and peptide-lipid phase behavior. J Biol Chem 287(26):21866–21872. https://doi.org/10.1074/jbc.M112.358721
Torrent M, Andreu D, Nogués VM, Boix E (2011) Connecting peptide physicochemical and antimicrobial properties by a rational prediction model. PLoS One 6(2):e16968. https://doi.org/10.1371/journal.pone.0016968
Zasloff M (2002) Antimicrobial peptides of multicellular organisms. Nature 415(6870):389–395
Chen Y, Gong Q, Song M, Lai J, Sun J, Liu Y (2019) Identification and characterization of three novel antimicrobial peptides from Acipenser dabryanus. Fish Shellfish Immunol 88:207–216. https://doi.org/10.1016/j.fsi.2019.02.050
Zhou Y, Lei Y, Cao Z, Chen X, Sun Y, Xu Y, Guo W, Wang S, Liu C (2019) A β-defensin gene of Trachinotus ovatus might be involved in the antimicrobial and antiviral immune response. Dev Comp Immunol 92:105–115. https://doi.org/10.1016/j.dci.2018.11.011
Jiang, H., Hu, Y., Wei, X., Xiao, X., Jakovlić, I., Liu, X., . & Yuan, G. (2018). Chemotactic effect of β-defensin 1 on macrophages in Megalobrama amblycephala. Fish Shellfish Immunol, 74, 35-42, DOI: https://doi.org/10.1016/j.fsi.2017.12.016.
Yang K, Hou B, Ren F, Zhou H, Zhao T (2019) Characterization of grass carp (Ctenopharyngodon idella) beta-defensin 1: implications for its role in inflammation control. Biosci Biotechnol Biochem 83(1):87–94. https://doi.org/10.1080/09168451.2018.1519386
