Molecular characterization and antibiotic resistance profiles of Salmonella isolated from fecal matter of domestic animals and animal products in Nairobi

Diana Nyabundi1, Nyamongo Onkoba2, Rinter Kimathi1, Atunga Nyachieo1,2, Gerald Juma1, Peter Kinyanjui1, Joseph Kamau1,2
1Department of Biochemistry, School of Medicine, University of Nairobi, Nairobi, Kenya
2Institute of Primate Research, Karen, Nairobi, Kenya

Tóm tắt

Salmonella has significant public health implications causing food borne and zoonotic diseases in humans. Treatment of infections due to Salmonella is becoming difficult due to emergence of drug resistant strains. There is therefore need to characterize the circulating non-typhoidal Salmonella (NTS) serovars in domestic animals and animal products in Kenya as well as determine their antibiotic resistance profiles. A total of 740 fecal samples were collected from cows (n = 150), pigs (n = 182), chicken (n = 191) and chicken eggs (n = 217) from various markets and abattoirs in Nairobi. The prevalence of NTS serovars using culture techniques and biochemical tests, antimicrobial sensitivity testing using disc diffusion method of the commonly prescribed antibiotics and phylogenetic relationships using 16S rRNA were determined. The results showed that the overall prevalence of Salmonella was 3.8, 3.6, 5.9 and 2.6% for pigs, chicken, eggs and cows respectively. Two serovars were isolated S. Typhimurium (85%) and S. Enteritidis (15%) and these two serovars formed distinct clades on the phylogenetic tree. Forty percent of the isolates were resistant to one or more antibiotics. The isolation of Salmonella Typhimurium and Salmonella Enteritidis that are resistant to commonly used antibiotics from seemingly healthy animals and animal products poses a significant public health threat. This points to the need for regular surveillance to be carried out and the chain of transmission should be viewed to ascertain sources of contamination.

Tài liệu tham khảo

Card R, Vaughan K, Bagnall M, Spiropoulos J, Cooley W, Strickland T, Davies R, Anjum MF. Virulence characterisation of salmonella enterica isolates of differing antimicrobial resistance recovered from UK livestock and imported meat samples. Front Microbiol. 2016;7:1–11. Majowicz SE, Musto J, Scallan E, Angulo FJ, Kirk M, O’Brien SJ, Jones TF, Fazil A, Hoekstra RM. The global burden of nontyphoidal Salmonella gastroenteritis. Clin Infect Dis. 2010;50(6):882–9. Kemal J. A review on the public health importance of bovine salmonellosis. J Vet Sci Technol. 2014;5(2):175. Uzzau S, Brown DJ, Wallis T, Rubino S, Leori G, Bernard S, Casadesus J, Olsen JE. Host adapted serotypes of Salmonella enterica. Epidemiol Infect. 2000;125(2):229–55. Loongyai W, Promphet K, Kangsukul N, Noppha R, Egg A. Detection of Salmonella in Egg Shell and Egg Content from Different Housing Systems for Laying Hens. International Journal of Biological, Biomolecular, Agricultural, Food and Biotechnological Engineering. 2010; 4(5):232-4 . Kariuki S, Revathi G, Kariuki N, Kiiru J, Mwituria J, Muyodi J, Hart CA. Invasive multidrug-resistant non-typhoidal Salmonella infections in Africa: Zoonotic or anthroponotic transmission? J Med Microbiol. 2006;55(5):585–91. Kariuki S, Dougan G. Antibacterial resistance in sub-Saharan Africa: an underestimated emergency. Ann N Y Acad Sci. 2014;1323(1):43–55. Kingsley RA, Msefula CL, Thomson NR, Kariuki S, Holt KE, Gordon MA, Harris D, Clarke L, Whitehead S, Sangal V, Marsh K, Achtman M, Molyneux ME, Cormican M, Parkhill J, MacLennan CA, Heydermann RS, Dougan G. Epidemic multiple drug resistant Salmonella Typhimurium causing invasive disease in sub-Saharan Africa have a distinct genotype Epidemic multiple drug resistant Salmonella Typhimurium causing invasive disease in sub-Saharan Africa have a distinct genotype. Genome Res. 2009;19(12):2279–87. Gordon MA, Graham SM, Walsh AL, Wilson L, Phiri A, Molyneux E, Ziljistra EE, Heyderman RS, Molyneux ME. Epidemics of invasive Salmonella enterica serovar enteritidis and S. enterica Serovar typhimurium infection associated with multidrug resistance among adults and children in Malawi. Clin Infect Dis. 2008;46(7):963–9. Forshell LP, Wierup M. Salmonella contamination: a significant challenge to the global marketing of animal food products. Rev Sci Tech. 2006;25(2):541–54. Threlfall EJ. Antimicrobial drug resistance in Salmonella: problems and perspectives in food- and water-borne infections. (Special issue: Pathogenic microbes in water and food). FEMS Microbiol Rev. 2002;26(2):141–8. Kagambèga A, Lienemann T, Aulu L, Traoré AS, Barro N, Siitonen A, Haukka K. Prevalence and characterization of Salmonella enterica from the feces of cattle, poultry, swine and hedgehogs in Burkina Faso and their comparison to human Salmonella isolates. BMC Microbiol. 2013;13(1):253. Kithuka JM, Maingi N, Njeruh FM, Ombui JN. The prevalence and economic importance of bovine fasciolosis in Kenya--an analysis of abattoir data. Onderstepoort J Vet Res. 2002;69(4):255–62. Kikuvi GM, Ombui JN, Mitema ES, Schwarz S, Kikuvi. Antimicrobial Resistance in Salmonella serotypes isolated from slaughter animals in Kenya. East Afr Med J. 2007;84(5):233–9. Daniel WW. Biostatistics: a foundation for analysis in the health sciences. 7th ed. New York: John Wiley & Sons; 1999. Kikuvi GM, Ombui JN, Mitema ES. Serotypes and antimicrobial resistance profiles of Salmonella isolates from pigs at slaughter in Kenya. J Infect Dev Ctries. 2010;4(4):243–8. Endris M, Taddesse F, Geloye M, Degefa T, Jibat T. Sero and media culture prevalence of Salmonellosis in local and exotic chicken, Debre Zeit, Ethiopia. African J Microbiol Res. 2013;7(12):1041–4. Bayu Z, Asrade B, Kebede N, Sisay Z, Bayu Y. Identification and characterization of Salmonella species in whole egg purchased from local markets in Addis Ababa, Ethiopia. J Vet Med Anim Heal. 2013;5(5):133–7. Addis Z, Kebede N, Worku Z, Gezahegn H, Yirsaw A, Kassa T. Prevalence and antimicrobial resistance of Salmonella isolated from lactating cows and in contact humans in dairy farms of Addis Ababa: a cross sectional study. BMC Infect Dis. 2011;11(1):222. Andino A, Hanning I. Salmonella enterica : survival, colonization, and virulence differences among serovars. Sci World J. 2015;2015(Table 3):1–16. Kariuki S, Revathi G, Gakuya F, Yamo V, Muyodi J, Hart CA. Lack of clonal relationship between non-typhi Salmonella strain types from humans and those isolated from animals living in close contact. FEMS Immunol Med Microbiol. 2002;33:165–71. Gantois I, Ducatelle R, Pasmans F, Haesebrouck F, Gast R, Humphrey TJ, Van Immerseel F. Mechanisms of egg contamination by Salmonella Enteritidis: review article. FEMS Microbiol Rev. 2009;33(4):718–38. Aragaw K, Terefe L, Abera M. Prevalence of Salmonella infection in intensive poultry farms in Hawassa and isolation of Salmonella species from sick and dead chickens. Ethiop Vet J. 2010;14(2):115–24. Menghistu HT, Rathore R, Dhama K, Agarwal RK. Isolation, identification and polymerase chain reaction (PCR) detection of salmonella species from field materials of poultry origin. Intl J Microbiol Res. 2011;2(2):135–42. Fashae K, Ogunsola F, Aarestrup FM, Hendriksen RS. Antimicrobial susceptibility and serovars of Salmonella from chickens and humans in Ibadan, Nigeria. J Infect Dev Ctries. 2010;4(08):484–94. Raufu I, Hendriksen RS, Ameh JA, Aarestrup FM. Occurrence and characterization of Salmonella Hiduddify from chickens and poultry meat in Nigeria. Foodborne Pathog Dis. 2009;6(4):425–30. Mdegela RH, Yongolo MG, Minga UM, Olsen JE. Molecular epidemiology of Salmonella gallinarum in chickens in Tanzania. Avian Pathol. 2000;29(5):457–63. Zadernowska A, Chajecka W. Detection of Salmonella spp.Presence in Food. Salmonella -A Danger Foodborne Pathog [Internet]. 2012;21. Kim ES, Hooper DC. Clinical importance and epidemiology of quinolone resistance. Infect Chemother. 2014;46(4):226–38. Whiley H, Ross K. Salmonella and eggs: from production to plate. Int J Environ Res Public Health. 2015;12(3):2543–56. De Medici D, Croci L, Delibato E, Di Pasquale S, Filetici E, Toti L. Evaluation of DNA extraction methods for use in combination with SYBR green I real-time PCR to detect Salmonella enterica serotype enteritidis in poultry. Appl Environ Microbiol. 2003;69(6):3456–61. Alemu S, Zewde BM. Prevalence and antimicrobial resistance profiles of Salmonella enterica serovars isolated from slaughtered cattle in Bahir Dar, Ethiopia. Trop Anim Health Prod. 2012;44(3):595–600. Sibhat B, Molla ZB, Zerihun A, Muckle A, Cole L, Boerlin P, Wilkie E, Perets A, Mistry K, Gebreyes WA. Salmonella serovars and antimicrobial resistance profiles in beef cattle, slaughterhouse personnel and slaughterhouse environment in Ethiopia. Zoonoses Public Health. 2011;58(2):102–9. Hendriksen RS, Vieira AR, Karlsmose S, Lo Fo Wong DM, Jensen AB, Wegener HC, Aarestrup FM. Global monitoring of salmonella serovar distribution from the world health organization global foodborne infections network country data bank: results of quality assured laboratories from 2001 to 2007. Foodborne Pathog Dis. 2011;8(8):887–900. Bosshard PP, Zbinden R, Abels S, Böddinghaus B, Altwegg M, Böttger EC. 16S rRNA gene sequencing versus the API 20 NE system and the VITEK 2 ID-GNB card for identification of nonfermenting Gram-negative bacteria in the clinical laboratory. J Clin Microbiol. 2006;44(4):1359–66. Wright GD. Q&A: antibiotic resistance: where does it come from and what can we do about it? BMC Biol. 2010;8:123. http://doi.org/10.1186/1741-7007-8-123. Foley SL, Lynne AM. Food animal-associated salmonella challenges: pathogenicity and antimicrobial resistance. J Anim Sci. 2007;86(No 14, Sup 2008):E173–87.