Molecular basis of pathogenesis of postharvest pathogenic Fungi and control strategy in fruits: progress and prospect

Molecular Horticulture - Tập 1 - Trang 1-10 - 2021
Zhan-Quan Zhang1,2, Tong Chen1, Bo-Qiang Li1, Guo-Zheng Qin1, Shi-Ping Tian1,2
1Key Laboratory of Plant Resources, Institute of Botany, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
2University of Chinese Academy of Sciences, Beijing, China

Tóm tắt

The disease caused by pathogenic fungi is the main cause of postharvest loss of fresh fruits. The formulation of disease control strategies greatly depends on the understanding of pathogenic mechanism of fungal pathogens and control strategy. In recent years, based on the application of various combinatorial research methods, some pathogenic genes of important postharvest fungal pathogens in fruit have been revealed, and their functions and molecular regulatory networks of virulence have been explored. These progresses not only provide a new perspective for understanding the molecular basis and regulation mechanism of pathogenicity of postharvest pathogenic fungi, but also are beneficial to giving theoretical guidance for the creation of new technologies of postharvest disease control. Here, we synthesized these recent advances and illustrated conceptual frameworks, and identified several issues on the focus of future studies.

Tài liệu tham khảo

Alkan N, Meng XC, Friedlander G, Reuveni E, Sukno S, Sherman A, et al. Global aspects of pacC regulation of pathogenicity genes in Colletotrichum gloeosporioides as revealed by transcriptome analysis. Mol Plant-Microbe Interact. 2013;26(11):1345–58. https://doi.org/10.1094/MPMI-03-13-0080-R. An B, Li BQ, Li H, Zhang ZQ, Qin GZ, Tian SP. Aquaporin8 regulates cellular development and reactive oxygen species production, a critical component of virulence in Botrytis cinerea. New Phytol. 2016;209(4):1668–80. https://doi.org/10.1111/nph.13721. An B, Li BQ, Qin GZ, Tian SP. Function of small GTPase Rho3 in regulating growth, conidiation and virulence of Botrytis cinerea. Fungal Genet Biol. 2015;75:46–55. https://doi.org/10.1016/j.fgb.2015.01.007. Ballester A-R, Norelli J, Burchard E, Abdelfattah A, Levin E, González-Candelas L, et al. Transcriptomic response of resistant (PI613981–Malus sieversii) and susceptible (“Royal Gala”) genotypes of apple to blue mold (Penicillium expansum) infection. Front Plant Sci. 2017;8:1981. https://doi.org/10.3389/fpls.2017.01981. Baulcombe D. RNA silencing in plants. Nature. 2004;431(7006):356–63. https://doi.org/10.1038/nature02874. Bedard K, Lardy B, Krause KH. NOX family NADPH oxidases: not just in mammals. Biochimie. 2007;89(9):1107–12. https://doi.org/10.1016/j.biochi.2007.01.012. Brito N, Espino JJ, González C. The endo-ß-1,4-xylanase Xyn11A is required for virulence in Botrytis cinerea. Mol Plant-Microbe Interact. 2006;19(1):25–32. https://doi.org/10.1094/MPMI-19-0025. Cai Q, Qiao LL, Wang M, He BY, Lin FM, Palmquist J, et al. Plants send small RNAs in extracellular vesicles to fungal pathogen to silence virulence genes. Science. 2018;360(6393):1126–9. https://doi.org/10.1126/science.aar4142. Cao SF, Zheng YH, Yang ZF, Tang SS, Jin P, Wang KT, et al. Effect of methyl jasmonate on the inhibition of Colletotrichum acutatum infection in loquat fruit and the possible mechanisms. Postharvest Biol Technol. 2008;49(2):301–7. https://doi.org/10.1016/j.postharvbio.2007.12.007. Caracuel Z, Roncero MI, Espeso EA, González-Verdejo CI, Garcia-Maceira FI, Di Pietro A. The pH signalling transcription factor PacC controls virulence in the plant pathogen Fusarium oxysporum. Mol Microbiol. 2003;48(3):765–79. https://doi.org/10.1046/j.1365-2958.2003.03465.x. Castel SE, Martienssen RA. RNA interference in the nucleus: roles for small RNAs in transcription, epigenetics and beyond. Nat. Rev. Genet. 2013;14(2):100–12. https://doi.org/10.1038/nrg3355. Chan ZL, Qin GZ, Xu XB, Li BQ, Tian SP. Proteome approach to characterize proteins induced by antagonist yeast and salicylic acid in peach fruit. J Proteome Res. 2007;6(5):1677–88. https://doi.org/10.1021/pr060483r. Chan ZL, Wang Q, Xu XB, Meng XH, Ding ZS, Qin GZ, et al. Functions of defense-related proteins and dehydrogenases in resistance response induced by salicylic acid in sweet cherry fruit at different maturity stages. Proteomics. 2008;8(22):4791–807. https://doi.org/10.1002/pmic.200701155. Chen Y, Li BQ, Xu XD, Zhang ZQ, Tian SP. The pH-responsive PacC transcription factor plays pivotal roles in virulence and patulin biosynthesis in Penicillium expansum. Environ Microbiol. 2018;20(11):4063–78. https://doi.org/10.1111/1462-2920.14453. Colmenares AJ, Aleu J, Durán-Patrón R, Collado IG, Hernández-Galán R. The putative role of botrydial and related metabolites in the infection mechanism of Botrytis cinerea. J Chem Ecol. 2002;28(5):997–1005. https://doi.org/10.1023/A:1015209817830. Dean R, van Kan JAL, Pretorius ZA, Hammond-Kosack KE, Di Pietro A, Spanu PD, et al. The top 10 fungal pathogens in molecular plant pathology. Mol Plant Pathol. 2012;13(4):414–30. https://doi.org/10.1111/j.1364-3703.2011.00783.x. De Ramón-Carbonell M, Sánchez-Torres P. The transcription factor PdSte12 contributes to Penicillium digitatum virulence during citrus fruit infection. Postharvest Biol Technol. 2017;125:129–39. https://doi.org/10.1016/j.postharvbio.2016.11.012. Dickman MB, Patil SS. Cutinase deficient mutants of Colletotrichum gloeosporioides are nonpathogenic to papaya fruit. Physiol Mol Plant Pathol. 1986;28(2):235–42. https://doi.org/10.1016/S0048-4059(86)80067-4. Dixon KP, Xu JR, Smirnoff N, Talbot NJ. Independent signaling pathways regulate cellular turgor during hyperosmotic stress and appressorium-mediated plant infection by Magnaporthe grisea. Plant Cell. 1999;11(10):2045–58. https://doi.org/10.1105/tpc.11.10.2045. Döhlemann G, Berndt P, Hahn M. Different signaling pathways involving a G-alpha protein, cAMP and a MAP kinase control germination of Botrytis cinerea conidia. Mol Microbiol. 2006;59(3):821–35. https://doi.org/10.1111/j.1365-2958.2005.04991.x. Dumas B, Borel C, Herbert C, Maury J, Jacquet C, Balsse R, et al. Molecular characterization of CLPT1, a SEC4-like Rab/GTPase of the phytopathogenic fungus Colletotrichum lindemuthianum which is regulated by the carbon source. Gene. 2001;272(1-2):219–25. https://doi.org/10.1016/S0378-1119(01)00536-4. Eshel D, Miyara I, Ailinng T, Dinoor A, Prusky D. pH regulates endoglucanase expression and virulence of Alternaria alternata in persimmon fruits. Mol Plant-Microbe Interact. 2002;15(8):774–9. https://doi.org/10.1094/MPMI.2002.15.8.774. Espino JJ, Gutiérrez-Sánchez G, Brito N, Shah P, Orlando R, González C. The Botrytis cinerea early secretome. Proteomics. 2010;10(16):3020–34. https://doi.org/10.1002/pmic.201000037. Frías M, González C, Brito N. BcSpl1, a cerato-platanin family protein, contributes to Botrytis cinerea virulence and elicits the hypersensitive response in the host. New Phytol. 2011;192(2):483–95. https://doi.org/10.1111/j.1469-8137.2011.03802.x. Ghildiyal M, Zamore PD. Small silencing RNAs: an expanding universe. Nat Rev Genet. 2009;10(2):94–108. https://doi.org/10.1038/nrg2504. Giesbert S, Siegmund U, Schumacher J, Kokkelink L, Tudzynski P. Functional analysis of BcBem1 and its interaction partners in Botrytis cinerea: impact on differentiation and virulence. PLoS One. 2014;9(5):e95172. https://doi.org/10.1371/journal.pone.0095172. González C, Brito N, Sharon A. Infection process and fungal virulence factors. In: Fillinger S, Elad Y, editors. Botrytis-the fungus, the pathogen and its management in agricultural systems. New York: Springer; 2016. p. 229–46. https://doi.org/10.1007/978-3-319-23371-0_12. González M, Brito N, González C. High abundance of serine/threonine-rich regions predicted to be hyper-O-glycosylated in the extracellular proteins coded by eight fungal genomes. BMC Microbiol. 2012;12(1):213. https://doi.org/10.1186/1471-2180-12-213. González M, Brito N, González C. The Botrytis cinerea elicitor protein BcIEB1 interacts with the tobacco PR5-family protein osmotin and protects the fungus against its antifungal activity. New Phytol. 2017;215(1):397–410. https://doi.org/10.1111/nph.14588. Heller J, Tudzynski P. Reactive oxygen species in phytopathogenic fungi: signaling, development, and disease. Annu Rev Phytopathol. 2011;49(1):369–90. https://doi.org/10.1146/annurev-phyto-072910-095355. Ji DC, Chen T, Ma DY, Liu JL, Xu Y, Tian SP. Inhibitory effects of methyl thujate on mycelial growth of Botrytis cinerea and possible mechanisms. Postharvest Biol Technol. 2018;142:46–54. https://doi.org/10.1016/j.postharvbio.2018.04.003. Jurick WM, Peng H, Beard HS, Garrett WM, Lichtner FJ, Luciano-Rosario D, et al. Blistering1 modulates Penicillium expansum virulence via vesicle-mediated protein secretion. Mol Cell Proteomics. 2020;19(2):344–61. https://doi.org/10.1074/mcp.RA119.001831. Kars I, Krooshof GH, Wagemakers L, Joosten R, van Kan JAL. Necrotizing activity of five Botrytis cinerea endopolygalacturonases produced in Pichia pastoris. Plant J. 2005;43(2):213–25. https://doi.org/10.1111/j.1365-313X.2005.02436.x. Klimpel A, Schulze Gronover C, Williamson B, Stewart JA, Tudzynski B. The adenylate cyclase (BAC) in Botrytis cinerea is required for full pathogenicity. Mol Plant Pathol. 2002;3(6):439–50. https://doi.org/10.1046/j.1364-3703.2002.00137.x. Kojima K, Bahn YS, Heitman J. Calcineurin, Mpk1 and Hog1 MAPK pathways independently control fludioxonil antifungal sensitivity in Cryptococcus neoformans. Microbiology. 2004;152:591–604. Kokkelink L, Minz A, Al-Masri M, Giesbert S, Barakat R, Sharon A, et al. The small GTPase BcCdc42 affects nuclear division, germination and virulence of the gray mold fungus Botrytis cinerea. Fungal Genet Biol. 2011;48(11):1012–9. https://doi.org/10.1016/j.fgb.2011.07.007. Kronstad JW. Virulence and cAMP in smuts, blasts and blights. Trends Plant Sci. 1997;2(5):193–9. https://doi.org/10.1016/S1360-1385(97)85226-0. Lee MH, Chiu CM, Roubtsova T, Chou CM, Bostock RM. Overexpression of a redox-regulated cutinase gene, MfCUT1, increases virulence of the brown rot pathogen Monilinia fructicola on Prunus spp. Mol Plant-Microbe Interact. 2010;23(2):176–86. https://doi.org/10.1094/MPMI-23-2-0176. Levin E, Raphael G, Ma J, Ballester AR, Feygenberg O, Norelli J, et al. Identification and functional analysis of NLP-encoding genes from the postharvest pathogen Penicillium expansum. Microorganisms. 2019;7(6):175. https://doi.org/10.3390/microorganisms7060175. Li BQ, Lai TF, Qin GZ, Tian SP. Ambient pH stress inhibits spore germination of Penicillium expansum by impairing protein synthesis and folding: a proteomic-based study. J Proteome Res. 2010;9(1):298–307. https://doi.org/10.1021/pr900622j. Li BQ, Wang WH, Zong YY, Qin GZ, Tian SP. Exploring pathogenic mechanisms of Botrytis cinerea secretome under different ambient pH based on comparative proteomic analysis. J Proteome Res. 2012;11(8):4249–60. https://doi.org/10.1021/pr300365f. Li BQ, Zong YY, Du ZL, Chen Y, Zhang ZQ, et al. Genomic characterization reveals insights into patulin biosynthesis and pathogenicity in Penicillium species. Mol Plant-Microbe Interact. 2015;28(6):635–47. https://doi.org/10.1094/MPMI-12-14-0398-FI. Li H, Tian SP, Qin GZ. NADPH oxidase is crucial for the cellular redox homeostasis in fungal pathogen Botrytis cinerea. Mol Plant-Microbe Interact. 2019a;32(11):1508–16. https://doi.org/10.1094/MPMI-05-19-0124-R. Li H, Zhang ZQ, He C, Qin GZ, Tian SP. Comparative proteomics reveals the potential targets of BcNoxR, a putative regulatory subunit of NADPH oxidase of Botrytis cinerea. Mol Plant-Microbe Interact. 2016;29(12):990–1003. https://doi.org/10.1094/MPMI-11-16-0227-R. Li H, Zhang ZQ, Qin GZ, He C, Li BQ, Tian SP. Actin is required for cellular development and virulence of Botrytis cinerea via the mediation of secretory proteins. mSystems. 2020;1:e00732–19. Liu XY, Cui XM, Ji DC, Zhang ZQ, Li BQ, Xu Y, et al. Luteolin-induced activation of the phenylpropanoid metabolic pathway contributes to quality maintenance and disease resistance of sweet cherry. Food Chem. 2020;342:128309. https://doi.org/10.1016/j.foodchem.2020.128309. Li TT, Wu Y, Wang Y, Gao HY, Gupta VK, Duan XW, et al. Secretome profiling reveals virulence-associated proteins of Fusarium proliferatum during infection with banana fruit. Biomolecules. 2019b;9(6):246. https://doi.org/10.3390/biom9060246. Ma DY, Ji DC, Liu JL, Xu Y, Chen T, Tian SP. Efficacy of methyl thujate in inhibiting Penicillium expansum growth and possible mechanism involved. Postharvest Biol Technol. 2020;161:111070. https://doi.org/10.1016/j.postharvbio.2019.111070. Ma DY, Ji DC, Zhang ZQ, Li BQ, Qin GZ, Xu Y, et al. Efficacy of rapamycin in modulating autophagic activity of Botrytis cinerea for controlling gray mold. Postharvest Biol Technol. 2019;150:158–65. https://doi.org/10.1016/j.postharvbio.2019.01.005. Ma HJ, Sun XP, Wang MS, Gai YP, Chung KR, Li HY. The citrus postharvest pathogen Penicillium digitatum depends on the PdMpkB kinase for developmental and virulence functions. Int J Food Microbiol. 2016;236:167–76. https://doi.org/10.1016/j.ijfoodmicro.2016.08.001. Manteau S, Abouna S, Lambert B, Legendre L. Differential regulation by ambient pH of putative virulence factors secretion by the phytopathogenic fungus Botrytis cinerea. FEMS Microbiol Ecol. 2003;43(3):359–66. https://doi.org/10.1111/j.1574-6941.2003.tb01076.x. Michielse CB, Becker M, Heller J, Moraga J, Collado IG, Tudzynski P. The Botrytis cinerea Reg1 protein, a putative transcriptional regulator, is required for pathogenicity, conidiogenesis, and the production of secondary metabolites. Mol Plant-Microbe Interact. 2011;24(9):1074–85. https://doi.org/10.1094/MPMI-01-11-0007. Nathues E, Jörgens C, Lorenz N, Tudzynski P. The histidine kinase CpHK2 has impact on spore germination, oxidative stress and fungicide resistance, and virulence of the ergot fungus Claviceps purpurea. Mol Plant Pathol. 2007;8(5):653–65. https://doi.org/10.1111/j.1364-3703.2007.00421.x. Novick P, Zerial M. The diversity of Rab proteins in vesicle transport. Curr Opin Cell Biol. 1997;9(4):496–504. https://doi.org/10.1016/S0955-0674(97)80025-7. OECD. In: Okawa K, editor. Market and trade impacts of food loss and waste reduction; 2014. Paris, France (http://www.oecd.org/officialdocuments/Publicdisplaydocu mentpdf/?Cote=TAD/CA/APM/WP (2014)35/FINAL&docLanguage=En). Peñalva MA, Tilburn J, Bignell E, Arst HN. Ambient pH gene regulation in fungi: making connections. Trends Microbiol. 2008;16(6):291–300. https://doi.org/10.1016/j.tim.2008.03.006. Prusky D, Alkan N, Fluhr R, Tesfaye M. Quiescent and necrotrophic lifestyle choice during postharvest disease development. Annu Rev Phytopathol. 2013;51(1):155–76. https://doi.org/10.1146/annurev-phyto-082712-102349. Prusky D, Lichter A. Mechanisms modulating fungal attack in post-harvest pathogen interactions and their control. Eur J Plant Pathol. 2008;121(3):281–9. https://doi.org/10.1007/s10658-007-9257-y. Prusky D, McEvoy JL, Saftner R, Conway WS, Jones R. The relationship between host acidification and virulence of Penicillium spp. on apple and citrus fruit. Phytopathology. 2004;94(1):44–51. https://doi.org/10.1094/PHYTO.2004.94.1.44. Prusky D, Yakoby N. Pathogenic fungi: leading or led by ambient pH? Mol Plant Pathol. 2003;4(6):509–16. https://doi.org/10.1046/j.1364-3703.2003.00196.x. Qin GZ, Liu J, Li BQ, Cao BH, Tian SP. Hydrogen peroxide acts on specific mitochondrial proteins to induce cell death of fungal pathogen revealed by proteomic analysis. PLoS One. 2011;6(7):e21945. https://doi.org/10.1371/journal.pone.0021945. Qin GZ, Tian SP, Chan ZL, Li BQ. Crucial role of antioxidant proteins and hydrolytic enzymes in pathogenicity of Penicillium expansum: analysis based on proteomic approach. Mol Cell Proteomics. 2007;6(3):425–38. https://doi.org/10.1074/mcp.M600179-MCP200. Qin GZ, Zong YY, Chen QL, Hua DL, Tian SP. Inhibitory effect of boron against Botrytis cinerea on table grapes and its possible mechanisms of action. Int J Food Microbiol. 2010;138(1-2):145–50. https://doi.org/10.1016/j.ijfoodmicro.2009.12.018. Rollins JA, Dickman MB. pH signaling in Sclerotinia sclerotiorum: identification of pacC/RIM1 homolog. Appl Environ Microb. 2001;67(1):75–81. https://doi.org/10.1128/AEM.67.1.75-81.2001. Sánchez-Torres P, Vilanova L, Ballester AB, López-Pérez M, Teixidó N, Viñas I, et al. Unravelling the contribution of the Penicillium expansum PeSte12 transcription factor to virulence during apple fruit infection. Food Microbiol. 2018;69:123–35. https://doi.org/10.1016/j.fm.2017.08.005. Sanzani SM, Reverberi M, Geisen R. Mycotoxins in harvested fruits and vegetables: insights in producing fungi, biological role, conducive conditions, and tools to manage postharvest contamination. Postharvest Biol Technol. 2016;122:95–105. https://doi.org/10.1016/j.postharvbio.2016.07.003. Schamber A, Leroch M, Diwo J, Mendgen K, Hahn M. The role of mitogen-activated protein (MAP) kinase signalling components and the Ste12 transcription factor in germination and pathogenicity of Botrytis cinerea. Mol Plant Pathol. 2010;11(1):105–19. https://doi.org/10.1111/j.1364-3703.2009.00579.x. Schmidtke C, Abendroth U, Brock J, Serrania J, Becker A, Bonas U. Small RNA sX13: a multifaceted regulator of virulence in the plant pathogen Xanthomonas. PLoS Pathog. 2013;9(9):e1003626. https://doi.org/10.1371/journal.ppat.1003626. Schouten A, van Baarlen P, van Kan JAL. Phytotoxic Nep1-like proteins from the necrotrophic fungus Botrytis cinerea associate with membranes and the nucleus of plant cells. New Phytol. 2010;177:493–505. Schulze GC, Kasulke D, Tudzynski P, Tudzynski B. The role of G protein alpha subunits in the infection process of the gray mold fungus Botrytis cinerea. Mol Plant-Microbe Interact. 2001;14:1293–302. Schulze GC, Schorn C, Tudzynski B. Identification of Botrytis cinerea genes upregulated during infection and controlled by the Gα subunit BCG1 using suppression subtractive hybridization (SSH). Mol Plant-Microbe Interact. 2004;17:537–46. Schumacher J. Signal transduction cascades regulating differentiation and virulence in Botrytis cinerea. In: Fillinger S, Elad Y, editors. Botrytis-the fungus, the pathogen and its management in agricultural systems. New York: Springer; 2016. p. 247–68. https://doi.org/10.1007/978-3-319-23371-0_13. Schumacher J, de Larrinoa IF, Tudzynski B. Calcineurin-responsive zinc finger transcription factor CRZ1 of Botrytis cinerea is required for growth, development, and full virulence on bean plants. Eukaryot Cell. 2008;7(4):584–601. https://doi.org/10.1128/EC.00426-07. Segmüller N, Ellendorf U, Tudzynski B, Tudzynski P. BcSAK1, a stress-activated MAP kinase is involved in vegetative differentiation and pathogenicity in Botrytis cinerea. Eukaryot Cell. 2007;6(2):211–21. https://doi.org/10.1128/EC.00153-06. Segmüller N, Kokkelink L, Giesbert S, Odinius D, Van Kan JAL, Tudzynski P. NADPH oxidases are involved in differentiation and pathogenicity in Botrytis cinerea. Mol Plant-Microbe Interact. 2008;21(6):808–19. https://doi.org/10.1094/MPMI-21-6-0808. Seo JK, Wu J, Lii Y, Li Y, Jin H. Contribution of small RNA pathway components in plant immunity. Mol Plant-Microbe Interact. 2013;26(6):617–25. https://doi.org/10.1094/MPMI-10-12-0255-IA. Shi XQ, Li BQ, Qin GZ, Tian SP. Antifungal activity of borate against Colletotrichum gloeosporioides and its possible mechanism. Plant Dis. 2011;95(1):63–9. https://doi.org/10.1094/PDIS-06-10-0437. Shlezinger N, Minz A, Gur Y, Hatam I, Dagdas YF, Talbot NJ, et al. Anti-apoptotic machinery protects the necrotrophic fungus Botrytis cinerea from host-induced apoptotic-like cell death during plant infection. PLoS Pathog. 2011;7(8):e1002185. https://doi.org/10.1371/journal.ppat.1002185. Siewers V, Viaud M, Jimenez-Teja D, Collado IG, Gronover CS, Pradier JM, et al. Functional analysis of the cytochrome P450 monooxygenase gene bcbot1 of Botrytis cinerea indicates that botrydial is a strain-specific virulence factor. Mol Plant-Microbe Interact. 2005;18(6):602–12. https://doi.org/10.1094/MPMI-18-0602. Solomon PS, Waters OD, Simmonds J, Cooper RM, Oliver R. The Mak2 MAP kinase signal transduction pathway is required for pathogenicity in Stagonospora nodorum. Curr Genet. 2005;48(1):60–8. https://doi.org/10.1007/s00294-005-0588-y. Son H, Seo YS, Min K, Park AR, Lee J, Jin JM, et al. A phenome-based functional analysis of transcription factors in the cereal head blight fungus, Fusarium graminearum. PLoS Pathog. 2011;7(10):e1002310. https://doi.org/10.1371/journal.ppat.1002310. ten Have A, Mulder W, Visser J, van Kan JAL. The endopolygalacturonase gene Bcpg1 is required for full virulence of Botrytis cinerea. Mol Plant-Microbe Interact. 1998;11(10):1009–16. https://doi.org/10.1094/MPMI.1998.11.10.1009. Tian S, Torres R, Ballester AR, Li B, Vilanova L, Gonzalez-Candelas L. Molecular aspects in pathogen-fruit interactions: virulence and resistance. Postharvest Biol Technol. 2016;122:11–21. https://doi.org/10.1016/j.postharvbio.2016.04.018. Tian SP, Qin GZ, Li BQ. Reactive oxygen species involved in regulating fruit senescence and fungal pathogenicity. Plant Mol Biol. 2013;82(6):593–602. https://doi.org/10.1007/s11103-013-0035-2. Valette-Collet O, Cimerman A, Reignault P, Levis C, Boccara M. Disruption of Botrytis cinerea pectin methylesterase gene Bcpme1 reduces virulence on several host plants. Mol Plant-Microbe Interact. 2003;16(4):360–7. https://doi.org/10.1094/MPMI.2003.16.4.360. Viaud M, Fillinger S, Liu W, Polepalli JS, Le Pecheur P, Kunduru AR, et al. A class III histidine kinase acts as a novel virulence factor in Botrytis cinerea. Mol Plant-Microbe Interact. 2006;19(9):1042–50. https://doi.org/10.1094/MPMI-19-1042. Vilanova L, López-Pérez M, Ballester AR, Teixidó N, Usall J, Lara I, et al. Differential contribution of the two major polygalacturonases from Penicillium digitatum to virulence towards citrus fruit. Int J Food Microbiol. 2018;282:16–23. https://doi.org/10.1016/j.ijfoodmicro.2018.05.031. Vilanova L, Teixidó N, Torres R, Usall J, Viñas I, Sánchez-Torres P. Relevance of the transcription factor PdSte12 in Penicillium digitatum conidiation and virulence during citrus fruit infection. Int J Food Microbiol. 2016;235:93–102. https://doi.org/10.1016/j.ijfoodmicro.2016.07.027. Vogt T. Phenylpropanoid biosynthesis. Mol Plant. 2010;3(1):2–20. https://doi.org/10.1093/mp/ssp106. Wang Y, Ji DC, Chen T, Li BQ, Zhang ZQ, Qin GZ, et al. Production, signaling and scavenging mechanisms for reactive oxygen species in fruit-pathogen interactions. Inter J Mol Sci. 2019;20(12):2994. https://doi.org/10.3390/ijms20122994. Weiberg A, Wang M, Lin FM, Zhao HW, Zhang ZH, Kaloshian I, et al. Fungal small RNAs suppress plant immunity by hijacking host RNA interference pathways. Science. 2013;342(6154):118–23. https://doi.org/10.1126/science.1239705. Yin YN, Wu SS, Chui CN, Ma TL, Jiang HX, Hahn M, et al. The MAPK kinase BcMkk1 suppresses oxalic acid biosynthesis via impeding phosphorylation of BcRim15 by BcSch9 in Botrytis cinerea. PLoS Pathog. 2018;14(9):e1007285. https://doi.org/10.1371/journal.ppat.1007285. Yu MM, Shen L, Fan B, Zhao DY, Zheng Y, Sheng JP. The effect of MeJA on ethylene biosynthesis and induced disease resistance to Botrytis cinerea in tomato. Postharvest Biol Technol. 2009;54(3):153–8. https://doi.org/10.1016/j.postharvbio.2009.07.001. Zhang ZQ, Li H, Qin GZ, He C, Li BQ, Tian SP. The MADS-box transcription factor Bcmads1 is required for growth, sclerotia production and pathogenicity of Botrytis cinerea. Sci Rep. 2016;6(1):33901. https://doi.org/10.1038/srep33901. Zhang ZQ, Qin GZ, Li BQ, Tian SP. Knocking out Bcsas1 in Botrytis cinerea impacts growth, development, and secretion of extracellular proteins, which decreases virulence. Mol Plant-Microbe Interact. 2014;27(6):590–600. https://doi.org/10.1094/MPMI-10-13-0314-R. Zheng L, Campbell M, Murphy J, Lam S, Xu JR. The BMP1 gene is essential for pathogenicity in the grey mold fungus Botrytis cinerea. Mol Plant-Microbe Interact. 2000;13(7):724–32. https://doi.org/10.1094/MPMI.2000.13.7.724. Zhou B, Zeng L. Immunity-associated programmed cell death as a tool for the identification of genes essential for plant innate immunity. Methods Mol Biol. 2018;1743:51–63. https://doi.org/10.1007/978-1-4939-7668-3_5. Zhu W, Ronen M, Gur Y, Minz-Dub A, Masrati G, Ben-Tal N, et al. BcXYG1, a secreted xyloglucanase from Botrytis cinerea, triggers both cell death and plant immune responses. Plant Physiol. 2017;175(1):438–56. https://doi.org/10.1104/pp.17.00375. Zhu Z, Tian SP. Resistant responses of tomato fruit treated by exogenous methyl jasmonate to Botrytis cinerea infection. Sci Hortic. 2012;142:38–43. https://doi.org/10.1016/j.scienta.2012.05.002.