Molecular authentication and phytochemical assessment of Ruscus hyrcanus Woron. (Asparagaceae) based on trnH- psbA barcoding and HPLC-PDA analysis
Tài liệu tham khảo
Baharfar, 2016, Essential oil composition of the different parts of Ruscus hyrcanus, Chem. Nat. Compd., 52, 342, 10.1007/s10600-016-1639-y
Balica, 2007, Comparative phytochemical study on rhizome and tissue culture of Ruscus aculeatus L, Planta Med., 73, 226, 10.1055/s-2007-987007
Bogler, 2006, Phylogeny of Agavaceae based on ndhF, rbcL, and its sequences, Aliso J. Syst.Evol. Bot., 22, 313
Bondarev, 2003, Steviol glycoside content in different organs of Stevia rebaudiana and its dynamics during ontogeny, Biol. Plant. (Prague), 47, 261, 10.1023/B:BIOP.0000022261.35259.4f
Brown, 2003, Variation of glucosinolate accumulation among different organs and developmental stages of Arabidopsis thaliana, Phytochemistry, 62, 471, 10.1016/S0031-9422(02)00549-6
Cao, 2016, Ruscogenin attenuates cerebral ischemia-induced blood-brain barrier dysfunction by suppressing TXNIP/NLRP3 inflammasome activation and the MAPK pathway, Int. J. Mol. Sci., 17, 1418, 10.3390/ijms17091418
De Combarieu, 2002, Identification of Ruscus steroidal saponins by HPLC-MS analysis, Fitoterapia, 73, 583, 10.1016/S0367-326X(02)00220-4
Dehghan, 2016, Antioxidant and antidiabetic activities of 11 herbal plants from Hyrcania region, Iran, J. Food Drug Anal., 24, 179, 10.1016/j.jfda.2015.06.010
Doyle, 1991, 283
Felsenstein, 1985, Confidence limits on phylogenies: an approach using the bootstrap, Evolution, 39, 783, 10.1111/j.1558-5646.1985.tb00420.x
Hadžifejzović, 2013, Bioactivity of the extracts and compounds of Ruscus aculeatus L. and Ruscus hypoglossum L, Ind. Crop. Prod., 49, 407, 10.1016/j.indcrop.2013.05.036
Hall, 1999, BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT
Huang, 2008, Possible mechanism of the anti-inflammatory activity of ruscogenin: role of intercellular adhesion molecule-1 and nuclear factor-κB, J. Pharm. Sci., 108, 198, 10.1254/jphs.08083FP
Huang, 2019, Comprehensive analysis of Rhodomyrtus tomentosa chloroplast genome, Plants, 8, 89, 10.3390/plants8040089
Ivanova, 2015, Ex situ conservation of Ruscus aculeatus L. – ruscogenin biosynthesis, genome-size stability and propagation traits of tissue-cultured clones, Biotechnol. Biotechnol. Equip., 29, 27, 10.1080/13102818.2014.984976
Jang, 2002, Phylogenetics of Ruscaceae sensu lato based on plastid rbcL and trnL-F DNA sequences, Stapfia, 80, 333
Kim, 2010, Molecular phylogenetics of Ruscaceae sensu lato and related families (Asparagales) based on plastid and nuclear DNA sequences, Ann. Bot., 106, 775, 10.1093/aob/mcq167
Li, 2019, Complete Chloroplast Genome Sequences of Kaempferia galanga and Kaempferia elegans: molecular structures and comparative analysis, Molecules, 24, 474, 10.3390/molecules24030474
Masullo, 2016, Ruscus Genus: a rich source of bioactive steroidal saponins, Planta Med., 82, 1513, 10.1055/s-0042-119728
Mehmood, 2019, Chloroplast genome of Hibiscus rosa-sinensis (Malvaceae): comparative analyses and identification of mutational hotspots, Genomics, 112, 581
Mirjalili, 2007, Phenological variation of the essential oil of Artemisia scoparia Waldst. et Kit from Iran, J. Essent. Oil Res., 19, 326, 10.1080/10412905.2007.9699294
Mirjalili, 2006, Essential oil variation of Salvia officinalis aerial parts during its phenological cycle, Chem. Nat. Compd., 42, 19, 10.1007/s10600-006-0027-4
Nuin
Nylander, 2004
Page, 2001
Perrone, 2009, Steroidal glycosides from the leaves of Ruscus colchicus: isolation and structural elucidation based on a preliminary liquid chromatography−electrospray ionization tandem mass spectrometry profiling, Phytochemistry, 70, 2078, 10.1016/j.phytochem.2009.08.016
Pkheidze, 1971, Diosgenin, neoruscogenin, and ruscogenin from Ruscus ponticus, R. hypophyllum, and Allium albidum, Chem. Nat. Compd., 7, 10.1007/BF00567962
Posada, 2004, Model selection and model averaging in phylogenetics: advantages of Akaike information criterion and Bayesian approaches over likelihood ratio tests, Syst. Biol., 53, 793, 10.1080/10635150490522304
Quandt, 2004, Molecular evolution of the chloroplast trnL-F region in land plants, Monogr. Syst. Bot. Mo. Bot. Gard., 98, 13
Raeisi, 2015, Variability in the essential oil content and composition in different plant organs of Kelussia odoratissima Mozaff.(Apiaceae) growing wild in Iran, J. Essent. Oil Res., 27, 283, 10.1080/10412905.2015.1025917
Rechinger, 1990, Flora iranica No, 165, 178
Ronquist, 2003, MrBayes 3: Bayesian phylogenetic inference under mixed models, Bioinformatics, 19, 1572, 10.1093/bioinformatics/btg180
Ronquist, 2005
Sannie, 1957, Steroid sapogenins 7. Neoruscogenin 3-β-Dihydroxy-22β-25L-S-spirostene, a new sapogenin from Ruscus aculeatus, Bull. Soc. Chem. France, 10, 1237
Shaw, 2007, Comparison of whole chloroplast genome sequences to choose noncoding regions for phylogenetic studies in angiosperms: the tortoise and the hare III, Am. J. Bot., 94, 275, 10.3732/ajb.94.3.275
Sonboli, 2013, Molecular authentication of Thymus persicus based on nrDNA ITS sequences data, Iran. J. Bot., 19, 179
Sun, 2012, Ruscogenin inhibits lipopolysaccharide-induced acute lung injury in mice: involvement of tissue factor, inducible NO synthase and nuclear factor (NF)-κB, Int. Immunopharmacol., 12, 88, 10.1016/j.intimp.2011.10.018
Swofford, 2002, b10
Thomas, 2014, Biological flora of the British isles: Ruscus aculeatus, J. Ecol., 102, 1083, 10.1111/1365-2745.12265
Thompson, 1994, Clustal W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice, Nucleic Acids Res., 22, 4673, 10.1093/nar/22.22.4673
Valentini, 2009, DNA barcoding for ecologists, Trends Ecol. Evol., 24, 110, 10.1016/j.tree.2008.09.011
Wu, 2001, Ruscogenin glycoside (Lm‐3) isolated from Liriope muscari improves liver injury by dysfunctioning liver‐infiltrating lymphocytes, J. Pharm. Pharmacol., 53, 681, 10.1211/0022357011775802
Yu, 2016, Phenolic compounds and antioxidant activity of different organs of Potentilla fruticosa L. from two main production areas of China, Chem. Biodivers., 13, 1140, 10.1002/cbdv.201500512