Giải phẫu phân tử: Mối quan hệ sinh học được suy diễn từ cấu trúc ba chiều của các protein

Journal of Molecular Evolution - Tập 30 - Trang 43-59 - 1990
Mark S. Johnson1, Michael J. Sutcliffe1, Tom L. Blundell1
1Laboratory of Molecular Biology, Department of Crystallography, Birkbeck College, University of London, London, UK

Tóm tắt

Một phương pháp đo khoảng cách phản ánh sự khác biệt giữa các cấu trúc đã được phát triển dựa trên các cấu trúc ba chiều của các protein tương tự, phương pháp này hoàn toàn độc lập với chuỗi trong chừng mực mà chỉ cần biết vị trí không gian tương đối của các nguyên tử carbon alpha trên chuỗi chính. Quá trình này dẫn đến mối quan hệ phát sinh chủng loại mà nhìn chung tương quan với các cây phát sinh chuỗi dựa trên loại dư lượng. Những mối quan hệ như vậy giữa các cấu trúc ba chiều của protein đã biết cũng là một công cụ hữu ích cho việc phân loại và lựa chọn chúng trong mô hình dựa trên kiến thức sử dụng các cấu trúc đồng khuôn. Chúng tôi đã áp dụng phương pháp này cho sáu bộ protein đồng khuôn: các mảnh immunoglobulin, globin, cytochromes, serine proteinases, gamma crystallins của thủy tinh trong mắt, và các miền gắn nucleotit đôi.

Từ khóa

#giải phẫu phân tử #cấu trúc protein #mối quan hệ phát sinh chủng loại #protein đồng khuôn #mô hình dựa trên kiến thức

Tài liệu tham khảo

Ambler RP, Meyer TE, Kamen MD, Schichman SA, Sawyer L (1981) A reassessment of the structure ofParacoccus cytochromec-550. J Mol Biol 147:351–356 Argos P, Hanei M, Wilson JM, Kelley WN (1983) A possible nucleotide-binding domain in the tertiary fold of phosphoribosyltransferases. J Biol Chem 25:6450–6457 Arutyunyan ÉG, Kuranova IP, Vainshtein BK, Steigemann W (1980) X-ray structural investigation of leghemoglobin VI. Structure of acetate-ferrileghemoglobin at a resolution of 2.0 A. Krystallografiya 25:80–103 Bajaj M, Blundell T (1984) Evolution and the tertiary structure of proteins. Annu Rev Biophys Bioeng 13:453–492 Baldwin JM (1980) The structure of human carbonmonoxy haemoglobin at 2.7 Å resolution. J Mol Biol 136:103–128 Barker WC, Ketcham LK, Dayhoff MO (1978) Immunoglobulins. In: Dayhoff MO (ed) Atlas of protein sequence and structure, vol 5, suppl 3. National Biomedical Research Foundation. Washington DC, pp 197–227 Bernstein FC, Koetzle TF, Williams GJB, Meyer eF, Brice MD, Rodgers JR, Kennard O, Shimanouchi T, Tasumi M (1977) The Protein Data Bank: a computer based archival file for macromolecular structures. J Mol Biol 112:535–542 Birktoft JJ, Banaszak LJ (1983) The presence of a histidineaspartic acid pair in the active site 2-hydroxyacid dehydrogenases. X-ray refinement of cytoplasmic malate dehydrogenase. J Bio. Chem 258:472–482 Blundell T, Lindley P, Miller L, Moss D, Slingsby C, Tickle I, Turnell B, Wistow G (1981) The molecular structure and stability of the eye lens: x-ray analysis of gamma-crystallin II. Nature 289:771–777 Blundell T, Carney D, Gardner S, Hayes F, Howlin B, Hubbard T, Overington J, Singh DA, Sibanda BL, Sutcliffe M (1988a) Knowledge-based protein modelling and design. Eur J Biochem 172:513–520 Blundell TL, Elliot G, Gardner SP, Hubbard T, Islam I, Johnson M, Mantafounis D, Murray-Rust P, Overington J, Pitts JE, Šali A, Sibanda BL, Singh J, Sternberg MJE, Sutcliffe MJ, Thornton JM, Travers P (1988b) Protein engineering and design. Phil Trans R Soc Lond, series B (in press) Bode W, Chen Z, Bartels K, Kutzbach C, Schmidt-Kastner G, Bartunik H (1983) Refined 2 Å x-ray crystal structure of porcine pancreatic kallikrein A, a specific trypsin-like serine proteinase. Crystallization, structure determination, crystallographic refinement, structure and its comparison with bovine trypsin. J Mol Biol 164:237–282 Bolton W, Perutz MF (1970) Three dimensional Fourier synthesis of horse deoxyhaemoglobin at 2.8 Å resolution. Nature 228:551–552 Brändén C-I, Schneider G, Lindqvist Y, Andersson I, Knight S, Lorimer G (1987) Structural and evolutionary aspects of the key enzymes in photorespiration; RuBisCO and glycolate oxidase. Cold Spring Harbor Symp Quant Biol LII:491–498 Buehner M, Ford GC, Moras D, Olsen KW, Rossmann MG (1973) D-glyceraldehyde-3-phosphate dehydrogenase: three dimensional structure and evolutionary significance. Proc Natl Acad Sci USA 70:3052–3054 Carter DC, Melis KA, O'Donnell SE, Burgess BK, Furey WF, Wang B-C, Stout CD (1985) Crystal structure ofAzotobacter cytochromec 5 at 2.5 Å resolution. J Mol Biol 184:279–295 Cederlund E, Lindqvist Y, Söderlund G, Brändén C-I, Jörnvall H (1988) Primary structure of glycolate oxidase from spinach. Eur J Biochem 173:523–530 Chothia, C, Lesk AM (1982) Evolution of proteins formed by β-sheets: I. Plastocyanin and azurin. J Mol Biol 160:309–323 Chothia C, Lesk AM (1986) The relation between the divergence of sequence and structure in proteins. EMBO J 5:823–826 Crippen GM (1977) A novel approach to calculation of conformation: distance geometry. J Comp Physiol 24:96–107 Deisenhofer J (1981). Crystallographic refinement and atomic models of a human Fc fragment and its complex with fragment B of protein A fromStaphylococcus aureus at 2.9- and 2.8-Å resolution. Biochemistry 20:2361–2370 Dickerson RE (1971) The structure of cytochromec and the rates of molecular evolution. J Mol Evol 1:26–45 Dickerson RE, Timkovitch R, almassy RJ (1976) The cytochrome fold and the evolution of bacterial energy metabolism. J Mol Biol 100:473–491 Doolittle RF (1979) Protein evolution. In: Neurath H, Hill RL (eds) The proteins, vol IV, ed 3. Academic Press, New York, pp 1–118 Doolittle RF (1981) Similar amino acid sequences: chance or common ancestry?. Science 214:149–159 Eklund H, Nordström B, Zeppezauer E, Söderlund G, Ohlsson I, Boiwe T, Söderberg B-O, Tapia O, Brändén C-I, Ekeson E (1976) Three-dimensional structure of horse liver alcohol dehydrogenase at 2.4 Å resolution. J Mol Biol 102:27–59 Epp O, Lattman EE, Schiffer M, Huber R, Palm W (1975) The molecular structure of a dimer composed of the Bence-Jones protein Rei refined at 2.0 Å resolution. Biochemistry 14:4943–4952 Eventoff W, Rossmann MG (1975) The evolution of dehydrogenases and kinases. CRC Crit Rev Biochem 3:111–140 Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791 Feng D-F, Doolittle RF (1987) Progressive sequence alignment as a prerequisite to correct phylogenetic trees. J Mol Evol 25: 351–360 Feng D-F, Johnson MS, Doolittle RF (1985) Aligning amino acid sequences: comparison of commonly used methods. J Mol Evol 21:112–125 Fermi G, Perutz M, Shaanan B, Fourme R (1984) The crystal structure of human deoxyhaemoglobin at 1.74 Å resolution. J Mol Biol 175:159–174 Ferro DR, Hermans J (1977) A different best rigid-body molecular fit routine. Acta Crystallogr A33:345–347 Fitch WM, Margoliash E (1967) Construction of phylogenetic trees. Science 15:279–284 Fredman ML (1984) Computing evolutionary similarity measures with length independent gap penalties. Bull Math Biol 46:553–566 Frier JA, Perutz MF (1977) Structure of human foetal deoxyhaemoglobin. J Mol Biol 112:97–112 Fujinaga M, James MNG (1987) Rat submaxillary gland protease, tonin. Structure solution and refinement at 1.8 Å resolution. J Mol Biol 195:373–396 Fujinaga M, Delbaere LTJ, Brayer GD, James MNG (1985) Refined structure ofα-lytic proteinase at 1.7 Å resolution. Analysis of hydrogen bonding and solvent structure. J Mol Biol 184:479–502 Furey W, Wang BC, Yoo CS, Sax M (1983) Structure of a novel Bence-Jones protein (Rhe) fragment at 1.6 Å resolution. J Mol Biol 167:661–692 Girling RL, Houston TE, Schmidt WC, Amma EL (1980) Macromolecular structure refinement by restrained least-squares and interactive graphics as applied to sickling deer type III hemoglobin. Acta Crystallogr A36:43–50 Goodman M, Moore GW, Masuda G (1975) Darwinian evolution in the genealogy of haemoglobin. Nature 253:603–608 Haser R, Pierrot M, Frey M, Payan F, Astier JP, Bruschi M, Le Gall J (1979) Structure and sequence of the multihaem cytochromec 3. Nature 282:806–810 Higuchi Y, Kusunoki M, Matsuura Y, Yasuoka N, Kakudo M (1984) Refined structure of cytochromec 3 at 1.8 Å resolution. J Mol Biol 172:109–139 Honzatko RB, Hendrickson WA, Love WE (1985) Refinement of a molecular model for lamprey hemoglobin fromPetromyzon marinus J Mol Biol 184:147–164 Hotelling H (1933) Analysis of a complex of statistical variables into principal components. J Educ Psychol 24:417–441 Hubbard TJP, Blundell TL (1987) Comparison of solvent-inaccessible cores of homologous proteins: definitions useful for protein modelling. Protein Eng 1:159–171 Hunt LT, Hurst-Calderone S, Dayhoff MO (1978) Globins. In: Dayhoff MO (ed) Atlas of protein sequence and structure, vol 5, suppl 3. National Biomedical Research Foundation. Washington DC, pp 229–249 James MNG, Sielecki AR, Brayer GD, Delbaere LTJ, Bauer C-A (1980) Structures of product and inihibitor complexes ofStreptomyces griseus protease A at 1.8 Å resolution. A model for serine proteinase catalysis. J Mol Biol 144:43–88 Jennings A (1978) Matrix computations for engineers and scientists. John Wiley and Sons, Chichester Kabsch W (1978) A discussion of the solution for the best rotation to relate two sets of vectors. Acta Crystallogr A34: 827–828 Kenknight CE (1984) Comparison of methods of matching protein structures. Acta Crystallogr A40:708–712 Kernighan BW, Ritchie DM (1978) The C programming language. Prentice-Hall, Englewoods Cliffs NJ Kortt AA, Burns JE, Trinick MJ, Appleby CA (1985) The amino acid sequence of hemoglobin I fromParasponia andersonii, a nonleguminous plant. FEBS Lett 180:55–60 Lazure C, Leduc C, Seidah NG, Thilbault G, Genest J, Chritien M (1984) Amino acid similarity of rat submaxillary tonin reveals similarities to serine proteases. Nature 307:555–558 Lesk AM, Chothia C (1980) How different amino acid sequences determine similar protein structures: the structure and evolutionary dynamics of the globins. J Mol Biol 136: 225–270 Lesk AM, Chothia C (1982) Evolution of proteins formed by β-sheets. II. The core of the immunoglobulin domains. J Mol Biol 160:325–342 Leunissen JAM, de Jong WW (1986) Phylogenetic trees constructured from the hydrophobic values of protein sequences. J Theor Biol 119:189–196 Marquart M, Deisenhofer J, Huber R, Palm W (1980) Crystallographic refinement and atomic models of the intact immunoglobulin molecule Kol and its antigen-binding fragment at 3.0 Å and 1.9 Å resolution. J Mol Biol 141:369–391 Matsuura Y, Takano T, Kickerson RE (1982) Structure of cytochromec 551 fromP. aeruginosa refined at 1.6 Å resolution and comparison of the two redox forms. J Mol Biol 156:389–409 Matthews BW, Rossmann MG (1985) Comparison of protein structures. Methods Enzymol 115:397–420 McLachlan AD (1979) Gene duplications in the structural evolution of chymotrypsin. J Mol Biol 128:49–79 McLachlan AD (1982) Rapid comparison of protein structures, Acta Crystallogr A34:871–873 Meyer E, Cole G, Radahakrishnan R, Epp O (1988) Structure of native porcine pancreatic elastase at 1.65 Å resolution. Acta Crystallogr B44:26–38 Moras D, Olsen KW, Sabesan MN, Buehner M, Ford GC, Rossmann MG (1975) Studies of the asymmetry in the three dimensional structure of lobster D-glyceraldehyde-3-phosphate dehydrogenase. J Biol Chem 250:9137–9162 Needleman SA, Wunsch CD (1970) A general method applicable to the search for similarities in the amino acid sequence of two proteins. J Mol Biol 48:443–453 Ochi H, Hata Y, Tanaka N, Kanudo M, Sakurai T, Aihara S, Morita Y (1983) Structure of rice ferricytochromec at 2.0 Å resolution. J Mol Biol 166:407–418 Ohlsson I, Nordström B, Brändén C-I (1974) Structural and functional similarities within the coenzyme binding domains of dehydrogenases. J Mol Biol 89:339–354 Padlan EA, Love WE (1985) Refined crystal structure of deoxyhemoglobin S. I. Restrained least-squares refinement at 3.0-Å resolution. J Biol Chem 260:8272–8279 Pai EF, Karplus PA, Schulz GE (1988) Crystallographic analysis of the binding of NADPH, NADPH fragments, and NADPH analogues to glutathione reductase. Biochemistry 27:4465–4474 Pierrot M, Haser R, Frey M, Payan F, Astier J-P (1982) Crystal structures and electron transfer properties of cytochromec 3. J Biol Chem 257:14341–14348 Rao ST, Rossmann MG (1973) Comparison of super-secondary structures in proteins. J Mol Biol 76:241–256 Read RJ, James MNG (1988) Refined crystal structure ofStreptomyces griseus trypsin at 1.7 Å resolution. J Mol Biol 200: 523–551 Reynolds RA, Remington SJ, Weaver LH, Fisher RG, Anderson WF, Ammon HL, Matthews BW (1985) Structure of a serine protease from rat mast cells determined from twinned crystals by isomorphous and molecular replacement. Acta Crystallogr B41:139–147 Richardson JS (1977) β-sheet topology and the relatedness of proteins. Nature 268:495–500 Rossmann MG, Moras D, Olsen KW (1974) Chemical and biological evolution of a nucleotide-binding protein. Nature 250:194–199 Salemme FR, Freer ST, Xuong NH, Alden RA, Kraut J (1973) The structure of oxidized cytochromec 2 ofRhodospirillum rubrum. J Biol Chem 248:3910–3921 Šali A, Turk V (1987) Prediction of the secondary structures of stefins and cystatins, the low-molecular mass protein inhibitors of cysteine proteinases. Biol Chem Hoppe-Seyler 368: 493–499 Saul FA, Amzel LM, Poljack RJ (1978) Preliminary refinement and structural analysis of the FAB fragment from human immunoglobulin NEW at 2.0 Å resolution. J Biol Chem 253: 585–597 Schreuder HA, van der Laan JM, Hol WGT, Drenth J (1988) Crystal structure ofp-hydroxybenzoate hydroxylase complexed with its reaction product. J Mol Biol 199:637–648 Schulz GE, Schirmer RH, Sachsenheimer W, Pai EF (1978) The structure of the flavoenzyme glutathione reductase. Nature 273:120–124 Schwartz RM, Dayhoff MO (1978) Cytochromes. In: Dayhoff MO (ed) Atlas of protein sequence and structure, vol 5, suppl 3. National Biomedical Research Foundation. Washington DC, pp 29–44 Shaanan B (1983) Structure of human oxyhaemoglobin at 2.1 Å resolution. J Mol Biol 171:31–59 Steigemann W, Weber E (1979) Structure of erythrocruorin in different ligand states refined at 1.4 Å resolution. J Mol Biol 127:309–338 Sutcliffe MJ, Haneef I, Carney D, Blundell TL (1987a) Knowledge based modelling of homologous proteins, part I: threedimensional frameworks derived from simultaneous superposition of multiple structures. Protein Eng 1:377–384 Sutcliffe MJ, Hayes FRF, Blundell TL (1987b) Knowledgebased modelling of homologous proteins, part II: rules for the conformations of substituted sidechains. Protein Eng 1:385–392 Takano T (1977) Structure of myoglobin at 2.0 Å resolution, II. Structure of deoxymyoglobin from sperm whale. J Mol Biol 110:569–584 Takano T, Dickerson RE (1981a) Conformational changes of cytochromec. I. Ferrocytochromec structure refined at 1.5 Å resolution. J Mol Biol 153:79–94 Takano T, Dickerson RE (1981b) Conformational changes of cytochromec. II. Ferricytochromec refinement at 1.8 Å resolution and comparison with the ferrocytochrome structure. J Mol Biol 153:95–115 Thieme R, Pai EF, Schirmer RH, Schulz GE (1981) Threedimensional structure of glutathione reductase at 2 Å resolution. J Mol Biol 152:763–782 Thorndike RM (1978) Correlation procedures for research. Gardner Press, New York, pp 1–340 Timkovich R, Dickerson RE (1976) The structure ofParacoccus denitrificans cytochromec 550. J Biol Chem 251:4033–4046 Tsukada H, Blow DM (1985) Structure ofα-chymotrypsin refined at 1.68 Å resolution. J Mol Biol 184:703–711 Wakabayashi S, Matsubara H, Webster DA (1986) Primary sequence of a dimeric bacterial hemoglobin fromVitreoscilla. Nature 322:481–483 Walter J, Steigemann W, Singh JP, Bartunik H, Bode W, Huber R (1982) On the disordered activation domain in trypsinogen. Chemical labelling and low-temperature crystallography. Acta Crystallogr B38:1462–1472 White, JL, Hackert ML, Buehner M, Adams MJ, Ford GC, Lentz PJ, Smiley IE, Steindel SJ, Rossmann MG (1976) A comparison of the structures of apo dogfish M4 lactate dehydrogenase and its ternary complexes. J Mol Biol 102:759–779 White HE, Driessen HPC, Slingsby C, Moss DS, Turnell WG, Lindley PF, (1988a) The use of pseudosymmetry in the rotation function of γIVa-crystallin. Acta Crystallogr B44:172–178 White HE, Driessen HPC, Slingsby C, Moss DS, Lindley PF (1988b) Packing interactions in the eye-lens: structural analysis, internal symmetry and lattice interactions of bovine gamma-IVa crystallin. J Mol Biol 207:217–235 Wierenga RK, Drenth J, Schulz GE (1983) Comparison of the three-dimensional protein and nucleotide structure of the FAD-binding domain ofp-hydroxybenzoate hydroxylase with the FAD- as well as NADPH-binding domains of glutathione reductase. J Mol Biol 167:725–739 Wierenga RK, De Maeyer MCH, Hol WGJ (1985) Interactions of pyrophosphate moieties withα-helices in dinucleotide binding proteins. Biochemistry 24:1346–1357 Wierenga RK, Terpstra P, Hol WG (1986) Prediction of the occurrence of the ADP βαβ-fold in proteins, using amino acid fingerprints. J Mol Biol 187:101–107 Wistow G, Turnell B, Summers L, Slingsby C, Moss D, Miller L, Lindley P, Blundell T (1983) X-ray analysis of the eye lens protein gamma-II crystallin at 1.9 Å resolution. J Mol Biol 170:175–202 Young CL, Barker WC, Tomaselli CM, Dayhoff MO (1978) Serine proteases. In: Dayhoff MO (ed) Atlas of protein sequence and structure, vol 5, suppl 3. National Biomedical Research Foundation, Washington DC, pp 73–93