Molecular analysis of bacterial diversity in mudflats along the salinity gradient of an acidified tropical Bornean estuary (South East Asia)

Springer Science and Business Media LLC - Tập 10 - Trang 1-13 - 2014
Henk Bolhuis1, Henriette Schluepmann2, Juri Kristalijn1, Zohrah Sulaiman3,4, David J Marshall3
1Department of Marine Microbiology, Royal Netherlands Institute of Sea Research (NIOZ), Yerseke, The Netherlands
2Molecular Plant Physiology, Utrecht University, Utrecht, The Netherlands
3Environmental and Life Sciences, Faculty of Science, Universiti Brunei Darussalam, Tungku Link, Gadong, Brunei Darussalam
4Institut Teknologi Brunei, Tungku Link, Gadong, Brunei Darussalam

Tóm tắt

The Brunei River and Bay estuarine system (BES) in the northwest of Borneo is acidic and highly turbid. The system supports extensive intertidal mudflats and presents a potentially steep salinity and pH gradient along its length (45 km). Temporal variation in physical parameters is observed diurnally due to seawater flux during tidal forcing, and stochastically due to elevated freshwater inflow after rains, resulting in a salinity range between 0 and 34 psu. High velocity freshwater run-off from acid sulphate formations during monsoon seasons results in highly variable and acidic conditions (pH 4) at the upper reaches of the BES, whereas the pH is relatively stable (pH 8) at the seaward extremes, due to mixing with seawater from the South China Sea. At their surfaces, the BES mudflats present microbial ecosystems driven by oxygenic phototrophs. To study the effect of various physical parameters on the bacterial diversity of the BES mudflats, surface samples were collected from six sites stretching over 40 km for molecular and phylogentic analysis. The bacterial diversity at these sites was compared by community fingerprinting analysis using 16S rRNA gene based denaturing gradient gel electrophoresis and by 16S rRNA gene sequencing and phylogenetic analyses. Results revealed functionally conserved, diatom-driven microbial mudflat communities composed of mainly novel, uncultured species. Species composition was evaluated as 50-70% unique for each site along the BES. Clustering of the sequences commonly occurred and revealed that proteobacterial diversity was related to the salinity gradient. When considering all phyla, the diversity varied consistently with physical parameters (including anthropogenic) that are expected to influence microbial composition. The BES mudflats were found to comprise the typical functional groups of microorganisms associated with photosynthetic carbon flux, sulfur cycling (Gamma- and Deltaproteobacteria), and decomposition (Bacteroidetes). From a structural perspective, however, the mudflats constituted discretely distributed communities along the physical gradient of the BES, composed of largely novel species of Bacteria. This study provides first insights into patterns of bacterial community structure in tropical South East Asian coastal ecosystems that are potentially threatened by increasing variability in pH and salinity, in line with predicted future environmental change.

Tài liệu tham khảo

Underwood GJC, Kromkamp J: Primary production by phytoplankton and microphytobenthos in estuaries. Adv Ecol Res. 1999, 29: 93-153. de Winder B, Staats N, Stal LJ, Paterson DM: Carbohydrate secretion by phototrophic communities in tidal sediments. J Sea Res. 1999, 42: 131-146. 10.1016/S1385-1101(99)00021-0. Paterson DM: Short-term changes in the erodibility of intertidal cohesive sediments related to the migratory behavior of epipelic diatoms. Limnol Oceanogr. 1989, 34: 223-234. 10.4319/lo.1989.34.1.0223. Passarelli C, Olivier F, Paterson DM, Meziane T, Hubas C: Organisms as cooperative ecosystem engineers in intertidal flats. J Sea Res. 2013, 92: 92-101. Jorgensen BB: Mineralization of organic-matter in the sea bed - the role of sulfate reduction. Nature. 1982, 296: 643-645. 10.1038/296643a0. Leloup J, Quillet L, Berthe T, Petit F: Diversity of the dsrAB (dissimilatory sulfite reductase) gene sequences retrieved from two contrasting mudflats of the Seine estuary, France. FEMS Microbiol Ecol. 2006, 55: 230-238. 10.1111/j.1574-6941.2005.00021.x. Visscher PT, Gritzer RF, Leadbetter ER: Low-molecular-weight sulfonates, a major substrate for sulfate reducers in marine microbial mats. Appl Environ Microbiol. 1999, 65: 3272-3278. Cappenberg TE, Prins RA: Interrelations between sulfate-reducing and methane-producing bacteria in bottom deposits of a fresh-water lake. III. experiments with 14C-labeled substrates. Antonie Van Leeuwenhoek. 1974, 40: 457-469. 10.1007/BF00399358. Widdel F, Pfennig N: A new anaerobic, sporing, acetate-oxidizing, sulfate-reducing bacterium, Desulfotomaculum (emend.) acetoxidans. Arch Microbiol. 1977, 112: 119-122. 10.1007/BF00446665. Barton LL, Tomei FA: Sulfate-Reducing Bacteria. Edited by: Barton LL. 1995, New York, US: Springer, 1-32. Characteristics and activities of sulfate-reducing bacteria, 8, Biotechnology Handbooks, Coulon F, Chronopoulou PM, Fahy A, Paisse S, Goni-Urriza M, Peperzak L, Acuna Alvarez L, McKew BA, Brussaard CP, Underwood GJ, Timmis KN, Duran R, McGenity TJ: Central role of dynamic tidal biofilms dominated by aerobic hydrocarbonoclastic bacteria and diatoms in the biodegradation of hydrocarbons in coastal mudflats. Appl Environ Microbiol. 2012, 78: 3638-3648. 10.1128/AEM.00072-12. Leloup J, Petit F, Boust D, Deloffre J, Bally G, Clarisse O, Quillet L: Dynamics of sulfate-reducing microorganisms (dsrAB genes) in two contrasting mudflats of the Seine estuary (France). Microb Ecol. 2005, 50: 307-314. 10.1007/s00248-004-0034-6. Mayor DJ, Thornton B, Zuur AF: Resource quantity affects benthic microbial community structure and growth efficiency in a temperate intertidal mudflat. PLoS One. 2012, 7: e38582-10.1371/journal.pone.0038582. Roling WF, Milner MG, Jones DM, Fratepietro F, Swannell RP, Daniel F, Head IM: Bacterial community dynamics and hydrocarbon degradation during a field-scale evaluation of bioremediation on a mudflat beach contaminated with buried oil. Appl Environ Microbiol. 2004, 70: 2603-2613. 10.1128/AEM.70.5.2603-2613.2004. Jiang XT, Peng X, Deng GH, Sheng HF, Wang Y, Zhou HW, Tam NF: Illumina sequencing of 16S rRNA tag revealed spatial variations of bacterial communities in a mangrove wetland. Microb Ecol. 2013, 66: 96-104. 10.1007/s00248-013-0238-8. Lee J, Lee TK, Loffler FE, Park J: Characterization of microbial community structure and population dynamics of tetrachloroethene-dechlorinating tidal mudflat communities. Biodegradation. 2011, 22: 687-698. 10.1007/s10532-010-9429-x. Dent DL, Pons LJ: A world perspective on acid sulphate soils. Geoderma. 1995, 67: 263-276. 10.1016/0016-7061(95)00013-E. Grealish G, Fitzpatrick R: Acid sulphate soil characterization in Negara Brunei Darussalam: a case study to inform management decisions. Soil Use Manage. 2013, 29: 432-444. 10.1111/sum.12051. Grealish G, Fitzpatrick R, Ringrose-Voase A, Hicks W: Brunei: Summary of Acid Sulfate Soils. 2008, Perth, Australia Brunei Shell Petroleum Company Sendrian Berhard, Brunei Museum /Brunei Darussalam: The geology and hydrocarbon resources of Negara Brunei Darussalam. Edited by: Sandal ST. 1996, Syabas, ISBN 9991790004, 9789991790008, 2 MacDonald DD, Carr RS, Eckenrod D, Greening H, Grabe S, Ingersoll CG, Janicki S, Janicki T, Lindskoog RA, Long ER, Pribble R, Sloane G, Smorong DE: Development, evaluation, and application of sediment quality targets for assessing and managing contaminated sediments in Tampa Bay, Florida. Arch Environ Contam Toxicol. 2004, 46: 147-161. Bush RT, Sullivan LA, Fyfe D, Johnston S: Redistribution of monosulfidic black oozes by floodwaters in a coastal acid sulfate soil floodplain. Aust J Soil Res. 2004, 42: 603-607. 10.1071/SR03073. Clark MW, McConchie D, Lewis DW, Saenger P: Redox stratification and heavy metal partitioning in Avicennia-dominated mangrove sediments: a geochemical model. Chem Geol. 1998, 149: 147-171. 10.1016/S0009-2541(98)00034-5. Abril G, Etcheber H, Delille B, Frankignoulle M, Borges AV: Carbonate dissolution in the turbid and eutrophic Loire estuary. Mar Ecol Prog Ser. 2003, 259: 129-138. Marshall DJ, Santos JH, Leung KM, Chak WH: Correlations between gastropod shell dissolution and water chemical properties in a tropical estuary. Mar Environ Res. 2008, 66: 422-429. 10.1016/j.marenvres.2008.07.003. The Coastal Environmental Profile of Brunei Darussalam: Resource Assessment and Management Issues, Wokring Papers. Edited by: Chua TE, Chou LM, Sadorra MSM. 1987, Penang, Malaysia: The Worldfish Center Howland RJ, Tappin AD, Uncles RJ, Plummer DH, Bloomer NJ: Distributions and seasonal variability of pH and alkalinity in the Tweed Estuary, UK. Sci Total Environ. 2000, 251–252: 125-138. Loreau M, de Mazancourt C: Biodiversity and ecosystem stability: a synthesis of underlying mechanisms. Ecol Lett. 2013, 16 (Suppl 1): 106-115. Telesh I, Schubert H, Skarlato S: Life in the salinity gradient: discovering mechanisms behind a new biodiversity pattern. Estuar Coast Shelf Sci. 2013, 135: 317-327. Worm B, Barbier EB, Beaumont N, Duffy JE, Folke C, Halpern BS, Jackson JB, Lotze HK, Micheli F, Palumbi SR, Sala E, Selkoe KA, Stachowicz JJ, Watson R: Impacts of biodiversity loss on ocean ecosystem services. Science. 2006, 314: 787-790. 10.1126/science.1132294. Feely RA, Sabine CL, Lee K, Berelson W, Kleypas J, Fabry VJ, Millero FJ: Impact of anthropogenic CO2 on the CaCO3 system in the oceans. Science. 2004, 305: 362-366. 10.1126/science.1097329. Waldbusser GG, Salisbury JE: Ocean acidification in the coastal zone from an organism’s perspective: multiple system parameters, frequency domains, and habitats. Ann Rev Mar Sci. 2014, 6: 221-247. 10.1146/annurev-marine-121211-172238. Chao A: Non-parametric estimation of the number of classes in a population. Scand J Stat. 1984, 11: 265-270. Harris JK, Caporaso JG, Walker JJ, Spear JR, Gold NJ, Robertson CE, Hugenholtz P, Goodrich J, McDonald D, Knights D, Marshall P, Tufo H, Knight R, Pace NR: Phylogenetic stratigraphy in the Guerrero Negro hypersaline microbial mat. ISME J. 2013, 7: 50-60. 10.1038/ismej.2012.79. Bolhuis H, Fillinger L, Stal LJ: Coastal microbial mat diversity along a natural salinity gradient. PLoS One. 2013, 8: e63166-10.1371/journal.pone.0063166. Bolhuis H, Cretoiu MS, Stal LJ: Molecular ecology of microbial mats. FEMS Microbiol Ecol. 2014, doi:10.1111/1574-6941.12408 Sogin ML, Morrison HG, Huber JA, Mark Welch D, Huse SM, Neal PR, Arrieta JM, Herndl GJ: Microbial diversity in the deep sea and the underexplored “rare biosphere”. Proc Natl Acad Sci U S A. 2006, 103: 12115-12120. 10.1073/pnas.0605127103. Bolhuis H, Stal LJ: Analysis of bacterial and archaeal diversity in coastal microbial mats using massive parallel 16S rRNA gene tag sequencing. ISME J. 2011, 5: 1701-1712. 10.1038/ismej.2011.52. Zhang W, Ki JS, Qian PY: Microbial diversity in polluted harbor sediments I: bacterial community assessment based on four clone libraries of 16S rDNA. Estuar Coast Shelf Sci. 2008, 76: 668-681. 10.1016/j.ecss.2007.07.040. Toes AC, Finke N, Kuenen JG, Muyzer G: Effects of deposition of heavy-metal-polluted harbor mud on microbial diversity and metal resistance in sandy marine sediments. Arch Environ Contam Toxicol. 2008, 55: 372-385. 10.1007/s00244-008-9135-4. Hughes JB, Hellmann JJ, Ricketts TH, Bohannan BJM: Counting the uncountable: Statistical approaches to estimating microbial diversity. Appl Environ Microb. 2001, 67: 4399-4406. 10.1128/AEM.67.10.4399-4406.2001. Sahoo K, Dhal NK: Potential microbial diversity in mangrove ecosystems: a review. Indian J Mar Sci. 2009, 38: 249-256. Wang Y, Sheng HF, He Y, Wu JY, Jiang YX, Tam NF, Zhou HW: Comparison of the levels of bacterial diversity in freshwater, intertidal wetland, and marine sediments by using millions of illumina tags. Appl Environ Microbiol. 2012, 78: 8264-8271. 10.1128/AEM.01821-12. Watermann F, Hillebrand H, Gerdes G, Krumbein WE, Sommer U: Competition between benthic cyanobacteria and diatoms as influenced by different grain sizes and temperatures. Mar Ecol Prog Ser. 1999, 187: 77-87. Rinke C, Schmitz-Esser S, Stoecker K, Nussbaumer AD, Molnar DA, Vanura K, Wagner M, Horn M, Ott JA, Bright M: “Candidatus Thiobios zoothamnicoli,” an ectosymbiotic bacterium covering the giant marine ciliate Zoothamnium niveum. Appl Environ Microbiol. 2006, 72: 2014-2021. 10.1128/AEM.72.3.2014-2021.2006. Neutzling O, Pfleiderer C, Trüper HG: Dissimilatory sulphur metabolism in phototrophic non-sulphur bacteria. J Gen Microbiol. 1985, 131: 791-798. Selig ER, Turner WR, Troeng S, Wallace BP, Halpern BS, Kaschner K, Lascelles BG, Carpenter KE, Mittermeier RA: Global priorities for marine biodiversity conservation. PLoS One. 2014, 9: e82898-10.1371/journal.pone.0082898. Lohman DJ, de Bruyn M, Page T, von Rintelen K, Hal R, Ng PKL, Shih HT, Carvalho GR, von Rintelen T: Biogeography of the Indo-Australian Archipelago. Annu Rev Ecol Evol S. 2011, 42: 205-226. 10.1146/annurev-ecolsys-102710-145001. Sulaiman ZH, Mayden RL: Cypriniformes of borneo (Actinopterygii, otophysi): an extraordinary fauna for integrated studies on diversity, systematics, evolution, ecology, and conservation. Zootaxa. 2012, 3586: 359-376. Garbutt N, Prudente JC: Wild Borneo: The Wildlife and Scenery of Sabah, Sarawak, Brunei and Kalimantan. 2006, Cambridge, Mass: MIT Press, 176- Wong KM, Chan CL: Mount Kinabalu: Borneo’s Magic Mountain: An Introduction to the Natural History of One of the World’s Great Natural Monuments. 1997, Kota Kinabalu: Natural History Publications Rohde K: Latitudinal gradients in species-diversity - the search for the primary cause. Oikos. 1992, 65: 514-527. 10.2307/3545569. Martiny JBH, Eisen JA, Penn K, Allison SD, Horner-Devine MC: Drivers of bacterial β-diversity depend on spatial scale. Proc Natl Acad Sci. 2011, 108: 7850-7854. 10.1073/pnas.1016308108. Zhang Y, Zhao Z, Dai M, Jiao N, Herndl GJ: Drivers shaping the diversity and biogeography of total and active bacterial communities in the South China Sea. Mol Ecol. 2014, 23: 2260-2274. 10.1111/mec.12739. Hanson CA, Fuhrman JA, Horner-Devine MC, Martiny JB: Beyond biogeographic patterns: processes shaping the microbial landscape. Nat Rev Microbiol. 2012, 10: 497-506. de Bruyn M, Ruber L, Nylinder S, Stelbrink B, Lovejoy NR, Lavoue S, Tan HH, Nugroho E, Wowor D, Ng PK, Siti Azizah MN, Von Rintelen T, Hall R, Carvalho GR: Paleo-drainage basin connectivity predicts evolutionary relationships across three Southeast Asian biodiversity hotspots. Syst Biol. 2013, 62: 398-410. 10.1093/sysbio/syt007. Stein A, Gerstner K, Kreft H: Environmental heterogeneity as a universal driver of species richness across taxa, biomes and spatial scales. Ecol Lett. 2014, 7: 866-880. Miyashita NT, Iwanaga H, Charles S, Diway B, Sabang J, Chong L: Soil bacterial community structure in five tropical forests in Malaysia and one temperate forest in Japan revealed by pyrosequencing analyses of 16S rRNA gene sequence variation. Genes Genet Syst. 2013, 88: 93-103. Raes N, Roos MC, Slik JWF, van Loon EE, ter Steege H: Botanical richness and endemicity patterns of Borneo derived from species distribution models. Ecography. 2009, 32: 180-192. 10.1111/j.1600-0587.2009.05800.x. Hossain MB, Marshall DJ, Venkatramanan S: Sediment granulometry and organic matter content in the intertidal zone of the Sungai Brunei estuarine system, northwest coast of Borneo. Carpath J Earth Env Sci. 2014, 9: 231-239. Edwards U, Rogall T, Blocker H, Emde M, Bottger EC: Isolation and direct complete nucleotide determination of entire genes. Characterization of a gene coding for 16S ribosomal RNA. Nucleic Acids Res. 1989, 17: 7843-7853. 10.1093/nar/17.19.7843. Lane DJ: 16S/23S rRNA sequencing. Nucleic Acid Techniques in Bacterial Systematics. Edited by: Stackebrandt E, Goodfellow M. 1991, Chichester, United Kingdom: John Wiley and Sons, 115-175. Nubel U, Engelen B, Felske A, Snaidr J, Wieshuber A, Amann RI, Ludwig W, Backhaus H: Sequence heterogeneities of genes encoding 16S rRNAs in Paenibacillus polymyxa detected by temperature gradient gel electrophoresis. J Bacteriol. 1996, 178: 5636-5643. Piquet AM, Bolhuis H, Davidson AT, Thomson PG, Buma AG: Diversity and dynamics of Antarctic marine microbial eukaryotes under manipulated environmental UV radiation. FEMS Microbiol Ecol. 2008, 66: 352-366. 10.1111/j.1574-6941.2008.00588.x. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glockner FO: The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013, 41: D590-D596. 10.1093/nar/gks1219. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF: Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol. 2009, 75: 7537-7541. 10.1128/AEM.01541-09.