Molecular analyses of evolution and population structure in a worldwide almond [Prunus dulcis (Mill.) D.A. Webb syn. P. amygdalus Batsch] pool assessed by microsatellite markers

Springer Science and Business Media LLC - Tập 62 - Trang 205-219 - 2014
Angel Fernández i Martí1, Carolina Font i Forcada1, Kazem Kamali2, María J. Rubio-Cabetas1, Michelle Wirthensohn3, Rafel Socias i Company1
1Unidad de Fruticultura, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Zaragoza, Spain
2Department of Horticulture, University of Ardakan, Yazd, Iran
3School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Glen Osmond, Australia

Tóm tắt

A total of 158 almond accessions representative of the diversity of almond across the five continents were included for analysis using 17 microsatellite polymorphic markers. Genetic relationships among genotypes were estimated using cluster analysis, allowing their differentiation in two main groups, one with the domesticated almond cultivars and selections and the other with all wild Prunus species close to almond. The unweighted pair group method average tree drawn from this analysis classified the genotypes according to their geographical origin, confirming the particular evolution of different almond ecotypes. Structure analysis showed a strong subpopulation structure and linkage disequilibrium decaying with increasing genetic linkage distance. Analysis of molecular variance confirmed that most of the genetic variability was within populations. Therefore the connection structure between the different populations and the possible bottlenecks in the expansion of almond cultivars could be established.

Tài liệu tham khảo

Arunyawat U, Capdeville G, Decroocq V, Mariette S (2012) Linkage disequilibrium in French wild cherry germplasm and worldwide sweet cherry germplasm. Tree Genet Genomes 8:737–755 Asai WK, Micke WC, Kester DE, Rough D (1996) The evaluation and selection of current varieties. In: Micke WC (ed) Almond production manual, vol 3364. University of California Publication, California, pp 52–60 Barnaud A, Laucou V, This P, Lacombe T, Doligez A (2010) Linkage disequilibrium in wild French grapevine Vitis vinifera L. subsp. silvestris. Heredity 104:431–437 Brookfield JFY (1996) A simple new method for estimating null allele frequency from heterozygote deficiency. Mol Ecol 5:453–455 Coart E, Van Glabeke S, De Loose M, Larsen AS, Roldan-Ruiz I (2006) Chloroplast diversity in the genus Malus: new insights into the relationship between the European wild apple [Malus sylvestris (L.) Mill.] and the domesticated apple (Malus domestica Borkh.). Mol Ecol 15:2171–2182 Comadran J, Thomas WTB, van Eeuwijk FA, Ceccarelli S, Grando S, Stanca AM, Pecchioni N, Akar T, Al-Yassin A, Benbelkacem A, Ouabbou H, Bort J, Romagosa I, Hackett CA, Russell JR (2009) Patterns of genetic diversity and linkage disequilibrium in a highly structured Hordeum vulgare association-mapping population for the Mediterranean basin. Theor Appl Genet 119:175–187 Elhamzaoui A, Ouklabi A, Charafi J, Moumni M (2012) Assessment of genetic diversity of Moroccan cultivated almond (Prunus dulcis Mill. DA Webb) in its area of extreme diffusion, using SSR markers. Am J Plant Sci 3:1294–1303 Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620 Felber F, Kozlowski G, Arrigo N, Guadagnuolo R (2007) Genetic and ecological consequences of transgene flow to the wild flora. Adv Biochem Eng Biotechnol 107:173–205 Felipe AJ (1984) État de l’arboretum des espèces sauvages à Saragosse. Considérations sur l’utilisation de ce matériel botanique. Options Méditerranéennes CIHEAM/IAMZ 84/II, 203–204 Felsenstein J (2005) PHYLIP (Phylogeny Inference Package) version 3.6. Distributed by the author. Department of Genome Sciences, University of Washington, Seattle Fernandez i Marti A, Athanson B, Koepke T, Font i Forcada C, Dhingra A, Oraguzie N (2012) Genetic diversity and relatedness of sweet cherry cultivars based on SNP markers. Front Plant Sci. doi:10.3389/fpls.2012.00116 Fernández i Martí A, Alonso JM, Espiau MT, Rubio-Cabetas MJ, Socias i Company R (2009) Genetic diversity in Spanish and foreign almond germplasm assessed by molecular characterization with simple sequence repeats. J Am Soc Hort Sci 134:535–542 Flint-Garcia SA, Thornsberry JM, Buckler ES (2003) Structure of linkage disequilibrium in plants. Ann Rev Plant Biol 54:357–374 Font i Forcada C, Oraguzie N, Igartua E, Moreno MA, Gogorcena Y (2013) Population structure and marker-trait associations for pomological traits in peach and nectarine cultivars. Tree Genet Genomes 9:331–349 Gradziel TM (2011) Origin and dissemination of almond. Hort Rev 38:23–81 Grasselly C, Crossa-Raynaud P (1980) L’amandier. G.P. Maisonneuve et Larose. Maisonneuve et Larose, Paris Haudry A, Cenci A, Ravel C, Bataillon T, Brunel D, Poncet C, Hochu I, Poirier S, Santoni S, Glemin S, David J (2007) Grinding up wheat: a massive loss of nucleotide diversity since domestication. Mol Biol Evol 24:1506–1517 Kester DE, Gradziel TM, Grasselly C (1990) Almonds (Prunus). Acta Hortic 290:699–758 Kovalyov NV, Kostina KF (1935) A contribution to the study of the genus Prunus Focke. Questions of taxonomy and plant breeding (in Russian). Trudy po Prikladnoj Botanike Genetike i Selektsii, Serie 8, 4, 1–76 Kuleung C, Baenzinger PS, Dweikat I (2004) Transferability of SSR markers among wheat, rye and triticale. Theor Appl Genet 108:1147–1150 Ledig FT (1992) Human impacts on genetic diversity in forest ecosystems. Oikos 63:87–108 Martínez-Gómez P, Arulsekar S, Potter D, Gradziel TM (2003) An extended interspecific gene pool available to peach and almond breeding as characterized using simple sequence repeat (SSR) markers. Euphytica 131:313–322 Mather KA, Caicedo AL, Polato NR, Olsen KM, McCouch S, Purugganan MD (2007) The extent of linkage disequilibrium in rice (Oryza sativa L.). Genetics 177:2223–2232 Meirmans PG, van Tienderen PH (2004) GENOTYPE and GENODIVE: two programs for the analysis of genetic diversity of asexual organisms. Mol Ecol Notes 4:792–794 Mnejja M, Garcia-Mas J, Audergon JM, Arús P (2010) Prunus microsatellite marker transferability across rosaceous crops. Tree Genet Genomes 6:689–700 Nei M, Li WH (1979) Mathematical model for studying genetic variation interms of restriction endonucleases. Proc Natl Acad Sci USA 76:5269–5273 Nordborg M, Tabaré S (2002) Linkage disequilibrium: what history has to tell us. Trends Genet 18:83–90 Ostrowski MF, David J, Santoni S, McKhann H, Reboud X, Le Corre V, Camilleri C, Brunel D, Bouchez D, Faure B, Bataillon T (2006) Evidence for a large-scale population structure among accessions of Arabidopsis thaliana: possible causes and consequences for the distribution of linkage disequilibrium. Mol Ecol 15:1507–1517 Popov MG, Kostina KF, Poyarkova AI (1929) Wild trees and shrubs in Central Asia (in Russian). Trudy po Prikladnoj Botanike Genetike i Selektsii 2:241–483 Pritchard JK, Stephens M, Rosenberg NA, Donnelly P (2000) Association mapping in structured populations. Am J Hum Genet 67:170–181 Quinn G (1905) Some notes on almonds. Department of Agriculture of South Australia, Bulletin 5 Rehder A (1940) Manual of cultivated trees and shrubs. MacMillan, New York Remington DL, Thornsberry JM, Matsuoka Y, Wilson LM, Whitt SR, Doebley J, Kresovich S, Goodman MM, Buckler ES (2001) Structure of linkage disequilibrium and phenotypic associations in the maize genome. Proc Natl Acad Sci USA 98:11479–11484 Rikhter AA (1972) Biological basis for the creation of almond cultivars and commercial orchards (in Russian). Akademiya Nauk SSSR Glavnyj Botanicheskij Sad, Moscow Saitou N, Nei M (1987) The neighbour-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425 Shepherd T (1841) Lecture on the horticulture of Australia. In: Allen J (ed) The South Australia magazine, vol 1., July 1841—September 1842, South Australia, Adelaide, pp 148–150 Socias i Company R (2004) The contribution of Prunus webbii to almond evolution. Plant Genet Resour News 14:9–13 Socias i Company R, Felipe AJ (1992) Almond: a diverse germplasm. HortScience 27:717–718 Socias i Company R R (1990) Breeding self-compatible almonds. Plant Breed Rev 8:313–338 Socias i Company R, Alonso JM, Kodad O, Gradziel TM (2012) Almond. In: Badenes ML, Byrne D (eds) Fruit breeding, handbook of plant breeding 8. Springer, Heidelberg, pp 697–728 van Heerwaarden J, Doebley J, Briggs WH, Glaubitz JC, Goodman MM, Sánchez González JJ, Ross-Ibarra J (2011) Genetic signals of origin, spread, and introgression in a large sample of maize landraces. Proc Natl Acad Sci USA 108:1088–1092 Wirthensohn M, Sedgley M (2003) Australian almond cultivars: where are they? Australian Nutgrower 17:16