Molecular Mobility in the Amorphous Phase Determines the Critical Strain of Fibrillation in the Tensile Stretching of Polyethylene
Tóm tắt
The microstructural development of bimodal high density polyethylene subjected to tensile deformation was investigated as a function of strain after annealing at different temperatures by means of a scanning synchrotron small angle X-ray scattering (SAXS) technique. Two different deformation mechanisms were activated in sequence upon tensile deformation: intralamellar slipping of crystalline blocks dominates the deformation behavior at small deformations whereas a stress-induced crystalline block fragmentation and recrystallization process occurs at a critical strain yielding new crystallites with the molecular chains preferentially oriented along the drawing direction. The critical strain associated with the lamellar-to-fibrillar transition was found to be ca. 0.9 in bimodal sample, which is significantly larger than that observed for unimodal high-density polyethylene (0.4). This observation is primarily due to the fact that the bimodal sample possesses a greater mobility of the amorphous phase and thereby a reduced modulus of the entangled amorphous network. The conclusion of the mobility of the amorphous phase as a determining factor for the critical strain was further proven by the 1H-NMR T2 relaxation time. All these findings contribute to our understanding of the excellent slow crack growth resistance of bimodal polyethylene for pipe application.
Tài liệu tham khảo
Bartczak, Z. Effect of chain entanglements on plastic deformation behavior of linear polyethylene. Macromolecules2005, 38, 7702–7713.
Failla, M. D.; Mandelkern, L. Tensile properties of mixtures of linear polyethylene and random ethylene copolymers having similar molecular weights. Macromolecules1993, 26, 7167–7175.
Strobl, G. The physics of polymers. Springer, Berlin, 2006.
Men, Y.; Strobl, G. Critical strains determining the yield behavior of s-PP. J. Macromol. Sci. Phys.2001, 640, 775–796.
Men, Y. F.; Rieger, J.; Strobl, G. Role of the entangled amorphous networks in tensile deformation of semicrystalline polymers. Phys. Rev. Lett. 2003, 91, 095502.
Peterlin, A. Molecular model of drawing polyethylene and polypropylene. J. Mater. Sci.1971, 6, 490–508.
Li, L. B. In situ synchrotron radiation techniques: watching deformation-induced structural evolutions of polymers. Chinese J. Polym. Sci. 2018, 36, 1093–1102.
Jiang, Z. Y.; Tang, Y. J.; Men, Y. F.; Enderle, H.; Lilge, D.; Roth, S.; Gehrke, R.; Rieger, J. Structural evolution of tensile deformed high-density polyethylene during annealing: scanning synchrotron small angle X-ray scattering study. Macromolecules2007, 40, 7263–7269.
Jiang, Z. Y.; Tang, Y. J.; Rieger, J.; Enderle, H.; Lilge, D.; Roth, S.; Gehrke, R.; Heckmann, W.; Men, Y. F. Two lamellar to fibrillar transitions in the tensile deformation of high-density polyethylene. Macromolecules2010, 43, 4727–4732.
Men, Y.; Strobl, G. From crystalline block slips to dominance of network stretching—mechanisms of tensile deformation in semi-crystalline polymers. Chinese J. Polym. Sci. 2002, 20, 161–170.
Jiang, Z. Y.; Tang, Y. J.; Rieger, J.; Enderle, H. F.; Lilge, D.; Roth, S. V.; Gehrke, R.; Wu, Z.; Li, Z.; Men, Y. F. Structural evolution of tensile deformed high-density polyethylene at elevated temperatures: Scanning synchrotron small- and wide-angle X-ray scattering studies. Polymer 2009, 50, 4101–4111.
Bowden, P. B.; Young, R. J. Deformation mechanisms in crystalline polymers. J. Mater. Sci. 1974, 9, 2034–2051.
Galeski, A.; Bartczak, Z.; Argon, A. S.; Cohen, R. E. Morphological alterations during texture-producing plastic plane strain compression of high-density polyethylene. Macromolecules1992, 25, 5705–5718.
Flory, P. J.; Yoon, D. Y. Molecular morphology in semicrystalline polymers. Nature1978, 272, 226–229.
Wang, Y. T.; Jiang, Z. Y.; Wu, Z. H.; Men, Y. F. Tensile deformation of polybutene-1 with stable form I at elevated temperature. Macromolecules2013, 46, 518–522.
Wu, W.; Wignal, G. D.; Mandelkern, L. A SANS study of the plastic deformation mechanism in polyethylene. Polymer1992, 33, 4137–4140.
Keller, A.; Pope, D. P. Identification of structural processes in deformation of oriented polyethylene. J. Mater. Sci. 1971, 6, 453–478.
Peterlin, A.; Meinel, G. Small angle X-ray diffraction studies of plastically deformed polyethylene III. Small draw ratios. Makromol. Chem. 1971, 142, 227–240.
Meinel, G.; Peterlin, A. Plastic deformation of polyethylene. Colloid Polym. Sci. 1970, 242, 1151–1160.
Hiss, R.; Hobeika, S.; Lynn, C.; Strobl, G. Network stretching, slip processes, and fragmentation of crystallites during uniaxial drawing of polyethylene and related copolymers. A comparative study. Macromolecules1999, 32, 4390–4403.
Sun, Y. Y.; Fu, L. L; Wu, Z. H.; Men, Y. F. Structural evolution of ethylene-octene copolymers upon stretching and unloading. Macromolecules2013, 46, 971–976.
Liao, T.; Jiang, Z. Y.; Li, R.; Gao, Y. X.; Men, Y. F. Stretching temperature dependence of the critical strain in the tensile deformation of polyethylene copolymer. Eur. Polym. J. 2017, 97, 188–197.
Bohm, L. L.; Enderle, H. F.; Fleißner, M. High density polyethylene pipe resins. Adv.Mater. 1992, 4, 234–238.
Scheirs, J.; Bohm, L. L; Boot, J. C; Leevers, P. S. PE100 resins for pipe applications: continuing the development into the 21st century. Trends Polym. Sci. 1996, 4, 408–415.
Brown, N.; Lu, X.; Huang, Y. L; Qian, R. Slow crack growth in polyethylene—A review. Makromol. Chem. Makromol. Symp. 1991, 41, 55–67.
Huang, Y. L; Brown, N. The dependence of butyl branch density on slow crack growth in polyethylene kinetics. J. Polym. Sci., Part B: Polym. Phys. 1990, 28, 2007–2021.
Huang, Y. L; Brown, N. Dependence of slow crack growth in polyethylene on butyl branch density: morphology and theory. J. Polym. Sci., Part B: Polym. Phys. 1991, 29, 129–137.
Men, Y. F.; Rieger, J.; Enderle, H. F.; Lilge, D. The mobility of the amorphous phase in polyethylene as a determining factor for slow crack growth. Eur. Phys. J. E2004, 15, 421–425.
Men, Y. F.; Rieger, J.; Lindner, P.; Enderle, H.; Lilge, D.; Kristen, M.; Mihan, S.; Jiang, S. Structural changes and chain radius of gyration in cold drawn polyethylene after annealing: small- and wide-angle X-ray scattering and small angle neutron scattering studies. J. Phys. Chem. B2005, 109, 16650–16657.
Lu, Y.; Men, Y. F. Initiation, development and stabilization of cavities during tensile deformation of semicrystalline polymers. Chinese J. Polym. Sci. 2018, 36, 1195–1199.
Hobeika, S.; Men, Y.; Strobl, G. Temperature and strain rate independence of critical strains in polyethylene and poly(ethylene-co-vinyl acetate). Maeromoleeules2000, 33, 1827–1833.
Peterlin, A.; Baltá-Calleja, F. J. Diffraction studies of plastically deformed polyethylene. Kolloid Z. & Z. Polym. 1970, 242, 1093–1102.
Glatter, O.; Kratky, O. Small-angle X-ray scattering. Academic Press, London, 1982.
Litvinov, V. M.; Penning, J. P. Phase composition and molecular mobility in nylon 6 fibers as studied by proton NMR transverse magnetization relaxation. Macromol. Chem. Phys. 2004, 205, 1721–1734.
Yang, X. Y.; Liu, S. S.; Korobko, A. V.; Picken, S. J.; Besseling, N. A. M. Changes of the molecular mobility of polyft-caprolactone) upon drawing, studied by dielectric relaxation spectroscopy. Chinese J. Polym. Sci. 2018, 36, 665–674.
Hedesiu, C.; Demco, D. E.; Kleppinger, R.; Buda, A. A.; Blümich, B.; Remerie, K.; Litvinov, V. M. The effect of temperature and annealing on the phase composition, molecular mobility and thickness of domains in high density polyethylene. Polymer2007, 48, 763–777.
Litvinov, V. M.; Kurelec, L. Remarkably high mobility of some chain segments in the amorphous phase of strained HDPE. Polymer2014, 55, 620–625.
Men, Y. F.; Rieger, J.; Enderle, H. F.; Lilge, D. Mechanical a-process in polyethylene. Maeromoleeules2003, 36, 4689–4691.