Molecular Markers of Chemotherapy Toxicity in Colorectal Cancer
Tóm tắt
Personalized medicine appears to be the inevitable consequence of improvements in our understanding of the mechanisms of action of chemotherapeutic agents, as well as the description of the human genome and its impact on our understanding of the genes involved in DNA repair and drug metabolism. These rapid developments have been associated with the first efforts to establish genetic predictors of chemotherapy efficacy and toxicity for the chemotherapy drugs active in colorectal cancer—fluorouracil, irinotecan, and oxaliplatin.
Tài liệu tham khảo
Rouits E, Boisdron-Celle M, Dumont A, et al.: Relevance of Different UGT1A1 Polymorphisms in Irinotecan-Induced Toxicity: A Molecular and Clinical Study of 75 Patients. Clin Cancer Res, 2004. 10(15): 5151-5159.
Van Kuilenburg AB, Meinsma R, Zoetekouw L, Van Gennip AH: High prevalence of the IVS14 + 1 G > A mutation in the dihydropyrimidine dehydrogenase gene of patients with severe 5-fluorouracil-associated toxicity. Pharmacogenetics, 2002. 12(7): p. 555-8.
Johnston PG, Fisher ER, Rockette HE, et al.: The role of thymidylate synthase expression in prognosis and outcome of adjuvant chemotherapy in patients with rectal cancer. J Clin Oncol, 1994: 12; 2640-2647.
Longley D, Harkin D, Johnston P: 5-fluorouracil: mechanisms of action and clinical strategies. Nat Rev Cancer, 2003, 3: 330 - 338.
Collie-Duguid ES, Etienne MC, Milano G, McLeod HL: Known variant DPYD alleles do not explain DPD deficiency in cancer patients. Pharmacogenetics, 2000, 10(3): 217-223.
Ridge SA, Sludden J, Brown O, et al.: Dihydropyrimidine dehydrogenase pharmacogenetics in Caucasian subjects. Br J Clin Pharmacol, 1998. 46(2): p. 151-6.
Raida M, Schwabe W, Hausler P, et al.: Prevalence of a common point mutation in the dihydropyrimidine dehydrogenase (DPD) gene within the 5'-splice donor site of intron 14 in patients with severe 5-fluorouracil (5-FU)- related toxicity compared with controls. Clin Cancer Res, 2001, 7(9): 2832-2839.
Schwab M, Zanger UM, Marx C, et al.: Role of genetic and nongenetic factors for fluorouracil-related severe toxicity: A prospective clinical trial by the German 5-FU toxicity study group. J Clin Oncol, 2008, 26(13): 2131-38.
Braun MS, Richman SD, Quirke P, et al.: Predictive biomarkers of chemotherapy efficacy in colorectal cancer: results from the UK MRC FOCUS trial. J Clin Oncol, 2008. 26(16): p. 2690-8.
McLeod HL, Sargent DJ, Marsh S, et al.: Pharmacogenetic predictors of adverse events and response to chemotherapy in metastatic colorectal cancer: results from North American Gastrointestinal Intergroup Trial N9741. J Clin Oncol, 2010. 28(20): p. 3227-33.
Pare L, Paez D, Salazar J, et al.: Absence of large intragenic rearrangements in the DPYD gene in a large cohort of colorectal cancer patients treated with 5-FU-based chemotherapy. Br J Clin Pharmacol, 2010. 70(2): p. 268-72.
Mattison LK, Fourie J, Hirao Y, et al.: The uracil breath test in the assessment of dihydropyrimidine dehydrogenase activity: pharmacokinetic relationship between expired 13CO2 and plasma [2-13 C]dihydrouracil. Clin Cancer Res, 2006. 12(2): 549-555.
Richman S, Braun MS, Adlard JW, et al.: Prognostic value of thymidylate synthase (TS) expression on failure-free survival of fluorouracil-treated metastatic colorectal cancer patients. J Clin Oncol, 2006, Vol 24 (18 S): Abstract 10011.
Pullarkat ST, Stoehlmacher J, Ghaderi V, et al.: Thymidylate synthase gene polymorphism determines response and toxicity of 5-FU chemotherapy. Pharmacogenomics J, 2001, 1(1): 65-70.
Lecomte T, Ferraz JM, Zinzindohoue F, et al.: Thymidylate Synthase Gene Polymorphism Predicts Toxicity in Colorectal Cancer Patients Receiving 5-Fluorouracil-based Chemotherapy. Clin Cancer Res, 2004, 10(17): 5880-5888.
Braun MS, Richman SD, Thompson L, et al.: Association of molecular markers with toxicity outcomes in a randomized trial of chemotherapy for advanced colorectal cancer: the FOCUS trial. J Clin Oncol, 2009, 27(33): 5519-5528. **Large randomized assessment of molecular predictors of chemotherapy toxicity which did not confirm the promise of a number of putative predictors of outcome such as UGT1A1*28.
Boige V, Mendibourne J, Pignon JP, et al.: Pharmacogenetic assessment of toxicity and outcome in patients with metastatic colorectal cancer treated with LV5FU2, FOLFOX, and FOLFIRI: FFCD 2000-05. J Clin Oncol, 2010. 28(15): p. 2556-64.
Sohn KJ, Croxford R, Yates Z, et al.: Effect of the methylenetetrahydrofolate reductase C677T polymorphism on chemosensitivity of colon and breast cancer cells to 5-fluorouracil and methotrexate. J Natl Cancer Inst, 2004. 96(2): p. 134-44.
Cohen V, Panet-Raymond V, Sabbaghian N, et al.: Methylenetetrahydrofolate Reductase Polymorphism in Advanced Colorectal Cancer: A Novel Genomic Predictor of Clinical Response to Fluoropyrimidine-based Chemotherapy. Clin Cancer Res, 2003. 9(5): p. 1611-1615.
Etienne-Grimaldi MC, Milano G, Maindrault-Goebel F, et al.: Methylenetetrahydrofolate reductase (MTHFR) gene polymorphisms and FOLFOX response in colorectal cancer patients. Br J Clin Pharmacol, 2010. 69(1): p. 58-66.
Sharma R, Hoskins JM, Rivory LP, et al.: Thymidylate synthase and methylenetetrahydrofolate reductase gene polymorphisms and toxicity to capecitabine in advanced colorectal cancer patients. Clin Cancer Res, 2008. 14(3): p. 817-25.
Ando Y, Ueoka H, Sugiyama T, et al.: Polymorphisms of UDP-glucuronosyltransferase and pharmacokinetics of irinotecan. Ther Drug Monit, 2002. 24(1): 111-116.
Rahman A: Considerations for Integration of CDRH and CDER Regulations - A Case Study: Irinotecan and UGT1A1. March 2006. http://www.fda.gov/Cder/Offices/OODP/presentation/rahman.pdf
Roth AD, Yan P, Dietrich D, et al.: Is UGT1A1*28 homozygosity the strongest predictor for severe hematotoxicity in patients treated with 5-fluorouracil (5-FU)-irinotecan (IRI)? Results of the PETACC 3 - EORTC 40993 -SAKK 60/00 trial comparing IRI/5-FU/folinic acid (FA) to 5-FU/FA in stage II- III colon cancer (COC) patients. J Clin Oncol, 2008, 26(15 S): Abstract 4036.
McLeod HL, Parodi L, Sargent DJ, et al.: UGT1A1*28 toxicity and outcome in advanced colorectal cancer: Results from the trial N9741. J Clin Oncol, 2006, 24(18 S): Abstract 3520.
McLeod HL, Sargent DJ, Marsh S, et al.: Pharmacogenetic analysis of systemic toxicity and response after 5-fluorouracil (5FU)/CPT-11, 5FU/oxaliplatin (oxal), or CPT-11/oxal therapy for advanced colorectal cancer: Results from an intergroup trial. J Clin Oncol, 2003, 22:253, Abstract 1013.
Hoskins JM, Goldberg RM, Qu P, et al.: UGT1A1*28 genotype and irinotecan-induced neutropenia: dose matters. J Natl Cancer Inst, 2007. 99(17): p. 1290-5.
Roth AD, Yan P, Dietrich D, et al.: Does UGT1A1*28 homozygosity predict for severe toxicity in patients treated with 5-fluorouracil (5-FU)-irinotecan (IRI)? Results of the PETACC 3-EORTC 40993-SAKK 60/00 trial comparing IRI/5-FU/folinic acid (FA) to 5-FU/FA in stage II-III colon cancer. J Clin Oncol, 2008, 26(15 S): Abstract 277.
Roth AD, Yan P, Dietrich D, et al.: Is UGT1A1*28 homozygosity the strongest predictor for severe hematotoxicity in patients treated with 5-fluorouracil (5-FU)-irinotecan (IRI)? Results of the PETACC 3 - EORTC 40993 -SAKK 60/00 trial comparing IRI/5-FU/folinic acid (FA) to 5-FU/FA in stage II- III colon cancer (COC) patients. in Proc. ASCO. 2008.
Cecchin E, Innocenti F, D’Andrea M, et al.: Predictive role of the UGT1A1, UGT1A7, and UGT1A9 genetic variants and their haplotypes on the outcome of metastatic colorectal cancer patients treated with fluorouracil, leucovorin and Irinotecan. J Clin Oncol, 2009, 27(15): 2457-2465.
Toffoli G, Cecchin E, Gasparini G, et al.: Genotype driven phase 1 study of Irinotecan administered in combination with Fluorouracil/Leucovorin in patients with metastatic colorectal cancer. J Clin Oncol, 2010, 28(5); 866-871.
Mathijssen, RHJ, Marsh, S, Karlsson, MO, et al.: Irinotecan Pathway Genotype Analysis to Predict Pharmacokinetics. Clin Cancer Res, 2003, 9(9): 3246-3253.
• Van der Bol JM, Mathijssen RHJ, Creemers GJM, et al.: A CYP3A4 phenotype-based dosing algorithm for individualized treatment of Irinotecan. Clin Cancer Res, 2010, 16(2): 736-742. This article demonstrates the potential of using midazolam metabolism and clearance to guide the dosing of irinotecan.
Innocenti, F, Kroetz, DL, Schuetz, E, et al.: Comprehensive pharmacogenetic analysis of irinotecan neutropenia and pharmacokinetics. J Clin Oncol, 2009, 27(16): 2604-2614.
Chester JD, Joel SP, Cheeseman, SL, et al.: Phase I and Pharmacokinetic Study of Intravenous Irinotecan Plus Oral Ciclosporin in Patients With Fluorouracil-Refractory Metastatic Colon Cancer. J Clin Oncol, 2003, 21(6): 1125-1132.
Samimi G, Roohangiz S, Kuniyuki K, et al.: Increased Expression of the Copper Efflux Transporter ATP7A Mediates Resistance to Cisplatin, Carboplatin, and Oxaliplatin in Ovarian Cancer Cells. Clin Cancer Res, 2004. 10(14): p. 4661-4669.
Lecomte T, Landi B, Beaune P, et al.: Glutathione S-transferase P1 polymorphism (Ile105Val) predicts cumulative neuropathy in patients receiving oxaliplatin-based chemotherapy. Clin Cancer Res, 2006. 12(10): p. 3050-6.
Ruzzo A, Graziano F, Loupakis F, et al.: Pharmacogenetic profiling in patients with advanced colorectal cancer treated with first-line FOLFOX-4 chemotherapy. J Clin Oncol, 2007. 25(10): p. 1247-54.1.