Molecular Genetic Identification of Apple Cultivars Based on Microsatellite DNA Analysis. I. The Database of 600 Validated Profiles
Tóm tắt
Apple (Malus × domestica Borkh.) is the most widely grown permanent fruit crop of temperate climates. Although commercial apple growing is based on a small number of globally spread cultivars, its diversity is much larger and there are estimates about the existence of more than 10,000 documented varieties. The varietal diversity can be described and determined based on phenotypic characters of the external and internal traits of fruit, which, however, can be modulated by environmental factors. Consequently, molecular methods have become an important alternative means for the characterisation of apple cultivar diversity. In order to use multilocus microsatellite data for determination of unidentified or misidentified apple varieties, a database with molecular genetic fingerprints of well-determined reference cultivars needs to be available. The objective of the present work was to establish such a database that could be applied for the molecular genetic determination of a large number of historic and modern, diploid and triploid apple cultivars. Based on the analysis of more than 1600 accessions of apple trees sampled in 37 public and private cultivar collections in different European countries at 14 variable microsatellite loci, a database with 600 molecular genetic profiles was finally obtained. The key criterion for considering a molecular genetic profile as confirmed and for including it into the reference database was that at least two accessions of the same cultivar of different provenances generated an identical result, which was achieved for 98% of the apple cultivars present in the database. For the remaining genotypes, the cultivar assignment was supported by a parentage analysis or by comparison to molecular genetic profiles available in published works. The database is composed of 574 scion cultivars, 24 rootstock genotypes and two species of crab apples. Of the 574 scion cultivars, 61% were derived from historic or old cultivars, many of which were grown in Central Europe in the past. The remaining scion cultivars are currently grown or available in testing programmes and may gain importance in the future. In order to validate the genotyping data, parentage analysis was performed involving cultivars and rootstocks that arose after 1900, for which information about at least one parent cultivar was available from pomological and scientific literature and the molecular genetic profiles of the assumed parent(s) were also present in our database. This analysis revealed the presence of null alleles at locus COL, however, when excluding this locus, a mean genotyping error rate of only 0.28% per locus was revealed, which points to a high reliability of the dataset. The datasets with 14 and 13 loci (excluding locus COL) showed a high degree of discrimination power, with a combined non-exclusion probability of identity of 2.6 × 10−20 and 3.4 × 10−19. Five of the microsatellite loci analysed in the present study overlapped with another published dataset and after the application of conversion values, it was possible to align the allele lengths and compare the molecular genetic profiles of 20 randomly derived cultivars, which were analysed in both studies. This comparison evidenced an exact correspondence of the microsatellite profiles contained in the two datasets, further pointing to the accuracy of our database. Apart from its application to characterise genetic resources or to manage germplasm collections, the here presented database could serve as an important tool for quality control or as a useful instrument in breeding programmes.
Tài liệu tham khảo
Aigner K, Schalansky J (2013) Äpfel und Birnen: das Gesamtwerk. Matthes & Seitz, Berlin. ISBN 978-3-88221-051‑4
Aliotta G, Grassi G (2008) La storia naturale del melo in Europa e le radici culturali dell’Annurca. In: Aliotta G, Ciarallo A, Salerno CR (eds) Le piante e l’uomo in Campania. Le radici culturali e scientifiche. Istituto per la Diffusione delle Scienze Naturali, Torre Annunziata, pp 139–163
Amonn W, Meier L (1934) Bozner und Meraner Obstsorten. J. F. Amonn, Bozen
Baab G (2011) Die neuen resistenten Apfelsorten aus den Niederlanden. Öko-Obstbau 2011/1:4
Bannier HJ (2011) Moderne Apfelzüchtung: Genetische Verarmung und Tendenzen zur Inzucht. Erwerbs-Obstbau 52:85–110
Baric S (2012) Molecular tools applied to the advancement of fruit growing in South Tyrol – a review. Erwerbs-Obstbau 54:125–135
Baric S, Monschein S, Hofer M, Grill D, Dalla Via J (2008) Comparability of genotyping data obtained by different procedures – an interlaboratory survey. J Hortic Sci Biotechnol 83:183–190
Baric S, Storti A, Hofer M, Dalla Via J (2009) Molecular genetic characterisation of apple cultivars from different germplasm collections. Acta Hortic 817:347–353
Baric S, Storti A, Hofer M, Dalla Via J (2012) Resolving the parentage of the apple cultivar ‘Meran’. Erwerbs-Obstbau 54:143–146
Bartha-Pichler B, Brunner F, Gersbach K, Zuber M (2005) Rosenapfel und Goldparmäne. 365 Apfelsorten – Botanik, Geschichte und Verwendung. AT Verlag, Baden, München. ISBN 3‑03800-209‑7
Bernkopf S (2011) Von Rosenäpfeln und Landlbirnen. Ein Streifzug durch Oberösterreichs Apfel- und Birnensorten. Trauner, Linz
Bernkopf S, Keppel H, Novak R (2003) Neue alte Obstsorten. Äpfel, Birnen und Steinobst, 5th edn. Club Niederösterreich, Wien. ISBN 3‑7040-1350‑1
Bosch HT (2017) Pfaffenhofer Schmelzling. Sortenportraits Apfel, Erhalternetzwerk Obstsortenvielfalt, Pomologen-Verein Deutschland. https://obstsortenerhalt.de/obstart/details/21140. Accessed 21 Jan 2020
Bosch HT (2006) Rambur, Renette, Rotbirn...: lebendige Vielfalt der Äpfel und Birnen. Eine Bestandaufnahme der Apfel- und Birnensorten im Saarland und der Westpfalz.Verband der Gartenbauvereine Saarland-Pfalz, Schmelz
Bounous G (2006) Antiche cultivar di melo in Piemonte. Supplemento al n. 52 dei “Quaderni della Regione Piemonte – Agricoltura”. Regione Piemonte, Assessorato Agricoltura, Torino
Brown SK, Maloney KE (2003) Genetic improvement of apple: breeding, markers, mapping and biotechnology. In: Ferree DC, Warrington IJ (eds) Apples: botany, production and uses. CABI, Oxon, Cambridge, pp 31–59
Bus VG, van de Weg WE, Peil A, Dunemann F, Zini E, Laurens FN, Blažek J, Hanke V, Forsline PL (2012) The role of Schmidt ‘Antonovka’ in apple scab resistance breeding. Tree Genet Genomes 8:627–642
Cornille A, Giraud T, Smulders MJM, Roldán-Ruiz I, Gladieux P (2014) The domestication and evolutionary ecology of apples. Trends Genet 30:57–65
Delmotte F, Leterme N, Simon JC (2001) Microsatellite allele sizing: difference between automated capillary electrophoresis and manual technique. Biotechniques 31:810–814
Eurostat (2019) Agricultural production – orchards. Source: Statistics Explained. https://ec.europa.eu/eurostat/statistics-explained/index.php/Agricultural_production_-_orchards#Apple_trees. Accessed 21 Jan 2020
Evans KM, Patocchi A, Rezzonico F, Mathis F, Durel CE, Fernández-Fernández F, Boudichevskaia A, Dunemann F, Stankiewicz-Kosyl M, Gianfranceschi L, Komjanc M, Lateur M, Madduri M, Noordijk Y, van de Weg WE (2011) Genotyping of pedigreed apple breeding material with a genome-covering set of SSRs: trueness-to-type of cultivars and their parentages. Mol Breed 28:535–547
Ferreira V, Ramos-Cabrer AM, Carnide V, Pinto-Carnide O, Assunção A, Marreiros A, Rodrigues R, Pereira-Lorenzo S, Castro I (2016) Genetic pool structure of local apple cultivars from Portugal assessed by microsatellites. Tree Genet Genomes 12:36
Gaber R (2020) Siebenkant. Obstsortenblätter, Arche Noah. https://www.arche-noah.at/files/siebenkant_beschreibung_und_foto.pdf. Accessed 21 Jan 2020
Garkava-Gustavsson L, Mujaju C, Sehic J, Zborowska A, Backes GM, Hietaranta T, Antonius K (2013) Genetic diversity in Swedish and Finnish heirloom apple cultivars revealed with SSR markers. Sci Hortic 162:43–48
Gasi F, Kanlić K, Stroil BK, Pojskić N, Asdal Å, Rasmussen M, Kaiser C, Meland M (2016) Redundancies and genetic structure among ex situ apple collections in Norway examined with microsatellite markers. HortScience 51:1458–1462
Guarino C, Santoro S, De Simone S, Lain O, Cipriani G, Testolin R (2006) Genetic diversity in a collection of ancient cultivars of apple (Malus × domestica Borkh.) as revealed by SSR-based fingerprinting. J Hortic Sci Biotechnol 81:39–44
Guilford P, Prakash S, Zhu JM, Rikkerink E, Gardiner S, Bassett H, Forster R (1997) Microsatellites in Malus × domestica (apple): abundance, polymorphism and cultivar identification. Theor Appl Genet 94:249–254
Haberl M, Tautz D (1999) Comparative allele sizing can produce inaccurate allele size differences for microsatellites. Mol Ecol 8:1347–1349
Hampson CR, Kemp K (2003) Characteristics of important commercial apple cultivars. In: Ferree DC, Warrington IJ (eds) Apples: Botany, Production and Uses. CABI, Oxon, Cambridge, pp 61–89
Hardy OJ, Vekemans X (2002) SPAGeDi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol Ecol Notes 2:618–620
Hartmann W (2003) Farbatlas Alte Obstsorten, 2nd edn. Ulmer, Stuttgart. ISBN 3‑8001-4394‑1
Hartmann W (2015) Farbatlas Alte Obstsorten, 5th edn. Ulmer Verlag, Stuttgart. ISBN 978-3-8001-0316‑4
Hoffman JI, Amos W (2005) Microsatellite genotyping errors: detection approaches, common sources and consequences for paternal exclusion. Mol Ecol 14:599–612
Hokanson SC, Szewc-McFadden AK, Lamboy WF, McFerson JR (1998) Microsatellite (SSR) markers reveal genetic identities, genetic diversity and relationships in a Malus × domestica Borkh. core subset collection. Theor Appl Genet 97:671–683
Idury RM, Cardon LR (1997) A simple method for automated allele binning in microsatellite markers. Genome Res 7:1104–1109
Jacobsen R (2014) Apples of Uncommon Character. Bloomsbury, New York. ISBN 978-1-62040-227‑6
Janick J (2005) The origins of fruits, fruit growing and fruit breeding. Plant Breed Rev 25:255–321
Janick J, Cummins JN, Brown SK, Hemmat M (1996) Apples. In: Janick J, Moore JN (eds) Trees and tropical fruits. Fruit Breeding, vol 1. John Wiley & Sons, New York, pp 1–77
Juniper BE, Watkins R, Harris SA (1998) The origin of the apple. Acta Hortic 484:27–33
Kalinowski ST, Taper ML, Marshall TC (2007) Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol Ecol 16:1099–1006
Kalinowski ST, Wagner AP, Taper ML (2006) ML-Relate: a computer program for maximumlikelihood estimation of relatedness and relationship. Mol Ecol Notes 6:576–579
Larsen B, Toldam-Andersen TB, Pedersen C, Ørgaard M (2017) Unravelling genetic diversity and cultivar parentage in the Danish apple gene bank collection. Tree Genet Genomes 13:14
Lassois L, Denancé C, Ravon E, Guyader A, Guisnel R, Hibrand-Saint-Oyant L, Poncet C, Lasserre-Zuber P, Feugey L, Durel CE (2016) Genetic diversity, population structure, parentage analysis, and construction of core collections in the French apple germplasm based on SSR markers. Plant Mol Biol Rep 34:827–844
Leroy A (1873) Dictionnaire de Pomologie: contenant l’histoire, la description, la figure des fruits anciens et des fruits modernes les plus généralement connus et cultivés. Tome IV – Pommes, M–Z, Variétés N°° 259 a 527. Dans Les Principales Librairies Agricoles et Horticoles, Angers, Paris
Liebhard R, Gianfranceschi L, Koller B, Ryder CD, Tarchini R, Van de Weg E, Gessler C (2002) Development and characterisation of 140 new microsatellites in apple (Malus × domestica Borkh.). Mol Breed 10:217–241
Link H (2002) Lucas’ Anleitung zum Obstbau, 32nd edn. Ulmer, Stuttgart. ISBN 3‑8001-5545‑1
Litt M, Hauge X, Sharma V (1993) Shadow bands seen when typing polymorphic dinucleotide repeats: some causes and cures. Biotechniques 15:280–284
Luby JJ (2003) Taxonomic classification and brief history. In: Ferree DC, Warrington IJ (eds) Apples: botany, production and uses. CABI, Oxon, Cambridge, pp 1–14
Maurizzi S (2001) Il melo. Il Sole 24 Ore Edagricole, Bologna
Melville F, Cripps JEL (1970) Better rootstocks for apple trees. J Agric 11:267–269
Morgan J, Richards A (2002) The new book of apples. Ebury, London. ISBN 978-0-09-188398‑0
Moriya S, Iwanami H, Okada K, Yamamoto T, Abe K (2011) A practical method for apple cultivar identification and parent-offspring analysis using simple sequence repeat markers. Euphytica 177:135–150
Mühl F (2001) Alte und neue Apfelsorten, 4th edn. Obst- und Gartenbauverlag, München. ISBN 978-3-87596-093‑8
Müller J, Bissmann O, Poenicke W, Rosenthal H, Schindler O (1930) Deutschlands Obstsorten. Eckstein & Stähle, Stuttgart
Neri D (2004) Low-input apple production in central Italy: tree and soil management. J Fruit Orn Plant Res 12:69–76
NIAB-EMR (2016) Rootstock research at East Malling: a history. http://www.emr.ac.uk/projects/rootstock-research-east-malling-history/. Accessed 21 Jan 2020
Noiton DAM, Alspach PA (1996) Founding clones, inbreeding, coancestry, and status number of modern apple cultivars. J Am Soc Hortic Sci 121:773–782
Oberhofer H (2007) Obst- und Weinbau im Wandel der Zeit. Südtiroler Beratungsring für Obst- und Weinbau, Lana
Orange Pippin (2019) Geneva crab crab-apple. Fruit varieties descriptions. https://www.orangepippin.com/varieties/crab-apples/geneva. Accessed 21 Jan 2020
Ordidge M, Kirdwichai P, Baksh MF, Venison EP, Gibbings JG, Dunwell JM (2018) Genetic analysis of a major international collection of cultivated apple varieties reveals previously unknown historic heteroploid and inbred relationships. PLoS ONE 13:e202405
Patzak J, Paprštein F, Henychová A, Sedlák J (2012) Comparison of genetic diversity structure analyses of SSR molecular marker data within apple (Malus × domestica) genetic resources. Genome 55:647–665
Perazzolli M, Malacarne G, Baldo A, Righetti L, Bailey A, Fontana P, Velasco R, Malnoy M (2014) Characterization of resistance gene analogues (RGAs) in apple (Malus × domestica Borkh.) and their evolutionary history of the Rosaceae family. Plos One 9(2):e83844. https://doi.org/10.1371/journal.pone.0083844
Pereira-Lorenzo S, Ramos-Cabrer AM, Diaz-Hernandez MB (2007) Evaluation of genetic identity and variation of local apple cultivars (Malus × domestica Borkh.) from Spain using microsatellite markers. Genet Resour Crop Evol 54:405–420
Petzold H (1984) Apfelsorten, 3rd edn. Neumann-Verlag, Leipzig, Radebeul. ISBN 3‑7888-0363‑0
Pompanon F, Bonin A, Bellemain E, Taberlet P (2005) Genotyping errors: causes, consequences and solutions. Nat Rev Genet 6:847–859
Provincia di Vicenza (2005a) Scheda descrittiva: Rusenente – *ITAVAGM087. Istituto di Genetica e Sperimentazione Agraria “N. Strampelli”. Banca Dati, Biodiversità del Veneto. http://biodiversita.provincia.vicenza.it/schdett.php?c=*ITAVAGM087. Accessed 21 Jan 2020
Provincia di Vicenza (2005b) Scheda descrittiva: Talimi – *ITAVAGM073. Istituto di Genetica e Sperimentazione Agraria “N. Strampelli”. Banca Dati, Biodiversità del Veneto. http://biodiversita.provincia.vicenza.it/schdett.php?c=*ITAVAGM073. Accessed 21 Jan 2020
Ramos-Cabrer A, Diaz-Hernandez M, Pereira-Lorenzo S (2007) Use of microsatellites in the management of genetic resources of Spanish apple cultivars. J Hortic Sci Biotechnol 82:257–265
Reim S, Flachowsky H, Hanke MV, Peil A (2009) Verifying the parents of the Pillnitzer apple cultivars. Acta Hortic 814:319–323
Rieger M (2006) Introduction to fruit crops. Chapter 3: Apple (Malus domestica). The Haworth Press, Binghampton, pp 47–64
Rolff JH (2001) Der Apfel. Sortennamen und Synonyme. Selbstverlag Johann-Heinrich Rolff, Kiefersfelden
Routson KJ, Reilley AA, Henk AD, Volk GM (2009) Identification of historic apple trees in the Southwestern United States and implications for conservation. HortScience 44:589–594
Salvi S, Micheletti D, Magnago P, Fontanari M, Viola R, Pindo M, Velasco R (2014) One-step reconstruction of multi-generation pedigree networks in apple (Malus × domestica Borkh.) and the parentage of Golden Delicious. Mol Breed 34:511–524
Sanders R (2012) Das Apfel-Buch. Delius Klasing, Bielefeld. ISBN 978-3-7688-3467‑4
Sansavini S, Guerra W, Pellegrino S (2012) Gli obiettivi del miglioramento genetico e le nuove varietà per l’Europa. Riv Fruttic 2012/11:10–25
Schiavon M (2010) Antiche varietà di mele e pere del Veneto. Veneto Agricoltura: Azienda Regionale per i Settori Agricolo Forestale e Agroalimentare, Legnaro
Sehic J, Garkava-Gustavsson L, Nybom H (2011) More harmonization needed for DNA-based identification of apple germplasm. Acta Hortic 976:277–283
Silbereisen R, Götz G, Hartmann W (2015) Obstsorten Atlas. Nikol, Hamburg. ISBN 978-3-86820-219‑9
Silfverberg-Dilworth E, Matasci CL, Van de Weg WE, Van Kaauwen MP, Walser M, Kodde LP, Soglio V, Gianfranceschi L, Durel CE, Costa F, Yamamoto T (2006) Microsatellite markers spanning the apple (Malus × domestica Borkh.) genome. Tree Genet Genomes 2:202–224
Smith MWG (1971) National apple register of the United Kingdom. Ministry of Agriculture, Fisheries and Food, London. ISBN 1‑897604-28‑9
Stoll R (1888) Österreichisch-Ungarische Pomologie, 2nd edn. Selbstverlag, Klosterneuburg bei Wien
Storti A, Bannier HJ, Holler C, Kajtna B, Rühmer T, Wilfling A, Soldavini C, Dalla Via J, Baric S (2013) Molekulargenetische Analyse des ‘Maschanzker’/‘Borsdorfer’-Sortenkomplexes. Erwerbs-Obstbau 55:99–107
Storti A, Dalla Via J, Baric S (2012) Comparative molecular genetic analysis of apple genotypes maintained in germplasm collections. Erwerbs-Obstbau 54:137–141
Szalatnay D, Frei A (2009) Wie aus einem deutschen Prinzen ein schöner Engländer wurde. Schweiz Z Obst Weinbau 145:11–13
Testolin R, Foria S, Baccichet I, Messina R, Danuso F, Losa A, Scarbolo E, Stocco M, Cipriani G (2019) Genotyping apple (Malus × domestica Borkh.) heirloom germplasm collected and maintained by the Regional Administration of Friuli Venezia Giulia (Italy). Sci Hortic 252:229–237
Thomas MR, Cain P, Scott NS (1994) DNA typing of grapevines: a universal methodology and database for describing cultivars and evaluating genetic relatedness. Plant Mol Biol 25:939–949
van Treuren R, Kemp H, Ernsting G, Jongejans B, Houtman H, Visser L (2010) Microsatellite genotyping of apple (Malus × domestica Borkh.) genetic resources in the Netherlands: application in collection management and variety identification. Genet Resour Crop Evol 57:853–865
Urrestarazu J, Denancé C, Ravon E, Guyader A, Guisnel R, Feugey L, Poncet C, Lateur M, Houben P, Ordidge M, Fernandez-Fernandez F, Evans KM, Paprstein F, Sedlak J, Nybom H, Garkava-Gustavsson L, Miranda C, Gassmann J, Kellerhals M, Suprun I, Pikunova AV, Krasova NG, Torutaeva E, Dondini L, Tartarini S, Laurens F, Durel CE (2016) Analysis of the genetic diversity and structure across a wide range of germplasm reveals prominent gene flow in apple at the European level. BMC Plant Biol 16:130
Volk GM, Henk AD (2016) Historic American apple cultivars: identification and availability. J Am Soc Hortic Sci 141:292–301
Votteler W (2014) Verzeichnis der Apfel- und Birnensorten. Bayerischer Landesverband für Gartenbau und Landespflege e. V., München. ISBN 978-3-87596-086‑0
Way RD, Aldwinckle HS, Lamb RC, Rejman A, Sansavini S, Shen T, Watkins R, Westwood MN, Yoshida Y (1990) Apples (Malus). Acta Hortic 290:1–62
Webster AD, Wertheim SJ (2003) Apple rootstocks. In: Ferree DC, Warrington IJ (eds) Apples: botany, production and uses. CABI, Oxon, Cambridge, pp 91–124
Whealy K, Thuente J (2001) Fruit, berry and nut inventory: an inventory of nursery catalogs listing all fruit, berry and nut varieties available by mail order in the United States. Seed Savers Exchange, Decorah, Iowa. ISBN 1‑882424-57‑3
Widmer C, Schütz S, Inderbitzin J, Kellerhals M, Stadler P (2017) Die neue Apfelsorte Mariella. Schweiz Z Obst Weinbau 153:12–15
Yoshida Y (1977) Progress of apple breeding in Japan. Japan Agric Res Q 11:56–59