Moiré physics in twisted van der Waals heterostructures of 2D materials

Emergent Materials - Tập 4 Số 4 - Trang 813-826 - 2021
Sanjay K. Behura1, Alexis O. Miranda2, Sasmita Nayak3, Kayleigh Johnson3, Priyanka Das4, Nihar Pradhan4
1Department of Mathematics and Computer Science, University of Arkansas at Pine Bluff, Pine Bluff, USA
2Department of Chemical Engineering, University of Illinois at Chicago, Chicago, USA
3Department of Chemistry and Physics, University of Arkansas at Pine Bluff, Pine Bluff, USA
4Department of Chemistry, Physics, and Atmospheric Sciences, Jackson State University, Jackson, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

E. Y. Andrei and A. H. MacDonald. Graphene bilayers with a twist. Nature Materials 19, 1265–1275 (2020). https://doi.org/10.1038/s41563-020-00840-0

A. H. MacDonald, Bilayer Graphene’s Wicked, Twisted Road. Physics 12, 12 (2019). https://doi.org/10.1103/physics.12.12

R. Ribeiro-Palau, C. Zhang, K. Watanabe, T. Taniguchi, J. Hone, and C. R. Dean, Twistable electronics with dynamically rotatable heterostructures. Science 361(6403), 690–693 (2018). https://doi.org/10.1126/science.aat6981

Y. Cao, V. Fatemi, A. Demir, S. Fang, S. L. Tomarken, J. Y. Luo, J. D. Sanchez-Yamagishi, K. Watanabe, T. Taniguchi, E. Kaxiras, R. C. Ashoori, and P. Jarillo-Herrero. Nature, 556, 80–84 (2018). https://doi.org/10.1038/nature26154

E. Suárez Morell, J. D. Correa, P. Vargas, M. Pacheco, and Z. Barticevic, Flat bands in slightly twisted bilayer graphene: Tight-binding calculations. Phys Rev B, 82, 121407(R) (2010). https://doi.org/10.1103/PhysRevB.82.121407

Y. H. Zhang, D. Mao, Y. Cao, P. Jarillo-Herrero, and T. Senthil, Nearly flat Chern bands in moiré superlattices, Phys. Rev. B, 99, 075127 (2019). https://doi.org/10.1103/PhysRevB.99.075127

Z. Bi, N. F. Q. Yuan, and L. Fu, Designing flat bands by strain, Phys. Rev. B, 100, 035448 (2019). https://doi.org/10.1103/PhysRevB.100.035448

Balents, L.; Dean, C. R.; Efetov, D. K.; Young, A. F. Superconductivity and Strong Correlations in Moiré Flat Bands. Nature Physics, 16, 725–733 (2020). https://doi.org/10.1038/s41567-020-0906-9

Zhang, Z.; Wang, Y.; Watanabe, K.; Taniguchi, T.; Ueno, K.; Tutuc, E.; LeRoy, B. J. Flat Bands in Twisted Bilayer Transition Metal Dichalcogenides. Nature Physics, 16, 1093–1096 (2020). https://doi.org/10.1038/s41567-020-0958-x

Haddadi, F.; Wu, Q. S.; Kruchkov, A. J.; Yazyev, O. V. Moiré Flat Bands in Twisted Double Bilayer Graphene. Nano Lett, 20, 2410–2415 (2020). https://doi.org/10.1021/acs.nanolett.9b05117

Chebrolu, N. R.; Chittari, B. L.; Jung, J. Flat Bands in Twisted Double Bilayer Graphene. Phys. Rev. B, 99, 235417 (2019). https://doi.org/10.1103/PhysRevB.99.235417

Bistritzer, R.; MacDonald, A. H. Moiré Bands in Twisted Double-Layer Graphene. Proc. Natl. Acad. Sci, 108, 12233–12237 (2011). https://doi.org/10.1073/pnas.1108174108

Lisi, S.; Lu, X.; Benschop, T.; de Jong, T. A.; Stepanov, P.; Duran, J. R.; Margot, F.; Cucchi, I.; Cappelli, E.; Hunter, A.; Tamai, A.; Kandyba, V.; Giampietri, A.; Barinov, A.; Jobst, J.; Stalman, V.; Leeuwenhoek, M.; Watanabe, K.; Taniguchi, T.; Rademaker, L.; van der Molen, S. J.; Allan, M. P.; Efetov, D. K.; Baumberger, F. Observation of Flat Bands in Twisted Bilayer Graphene. Nature Physics, 17, 189–193 (2021). https://doi.org/10.1038/s41567-020-01041-x

Chen, W.; Sun, Z.; Wang, Z.; Gu, L.; Xu, X.; Wu, S.; Gao, C. Direct Observation of van Der Waals Stacking–Dependent Interlayer Magnetism. Science, 366(6468), 983–987 (2019). https://doi.org/10.1126/science.aav1937

Zhang, L.; Zhang, Z.; Wu, F.; Wang, D.; Gogna, R.; Hou, S.; Watanabe, K.; Taniguchi, T.; Kulkarni, K.; Kuo, T.; Forrest, S. R.; Deng, H. Twist-Angle Dependence of Moiré Excitons in WS2/MoSe2 Heterobilayers. Nature Communications, 11, Article number: 5888 (2020). https://doi.org/10.1038/s41467-020-19466-6

Guo, H.; Zhang, X.; Lu, G. Shedding Light on Moiré Excitons: A First-Principles Perspective. Sci. Adv, 6(42), eabc5638 (2020). https://doi.org/10.1126/sciadv.abc5638

Jin, C.; Regan, E. C.; Yan, A.; Iqbal Bakti Utama, M.; Wang, D.; Zhao, S.; Qin, Y.; Yang, S.; Zheng, Z.; Shi, S.; Watanabe, K.; Taniguchi, T.; Tongay, S.; Zettl, A.; Wang, F. Observation of Moiré Excitons in WSe2/WS2 Heterostructure Superlattices. Nature, 567, 76–80 (2019). https://doi.org/10.1038/s41586-019-0976-y

Tran, K.; Choi, J.; Singh, A. Moiré and beyond in Transition Metal Dichalcogenide Twisted Bilayers. 2D Materials, 8(2), 022002 (2021).  https://doi.org/10.1088/2053-1583/abd3e7

Hu, G.; Ou, Q.; Si, G.; Wu, Y.; Wu, J.; Dai, Z.; Krasnok, A.; Mazor, Y.; Zhang, Q.; Bao, Q.; Qiu, C. W.; Alù, A. Topological Polaritons and Photonic Magic Angles in Twisted α-MoO3 Bilayers. Nature, 582, 209–213 (2020). https://doi.org/10.1038/s41586-020-2359-9

Chen, M.; Lin, X.; Dinh, T. H.; Zheng, Z.; Shen, J.; Ma, Q.; Chen, H.; Jarillo-Herrero, P.; Dai, S. Configurable Phonon Polaritons in Twisted α-MoO3. Nature Materials, 19, 1307–1311 (2020). https://doi.org/10.1038/s41563-020-0732-6

Ni, G. X.; Wang, H.; Wu, J. S.; Fei, Z.; Goldflam, M. D.; Keilmann, F.; Özyilmaz, B.; Castro Neto, A. H.; Xie, X. M.; Fogler, M. M.; Basov, D. N. Plasmons in Graphene Moiré Superlattices. Nature Materials, 14, 1217–1222 (2015). https://doi.org/10.1038/nmat4425

Ni, G. X.; Wang, H.; Jiang, B. Y.; Chen, L. X.; Du, Y.; Sun, Z. Y.; Goldflam, M. D.; Frenzel, A. J.; Xie, X. M.; Fogler, M. M.; Basov, D. N. Soliton Superlattices in Twisted Hexagonal Boron Nitride. Nature Communications, 10, Article number: 4360 (2019). https://doi.org/10.1038/s41467-019-12327-x

Alden, J. S.; Tsen, A. W.; Huang, P. Y.; Hovden, R.; Brown, L.; Park, J.; Muller, D. A.; McEuen, P. L. Strain Solitons and Topological Defects in Bilayer Graphene. PNAS, 110(28), 11256–11260 (2013). https://doi.org/10.1073/pnas.1309394110

Woods, C. R.; Ares, P.; Nevison-Andrews, H.; Holwill, M. J.; Fabregas, R.; Guinea, F.; Geim, A. K.; Novoselov, K. S.; Walet, N. R.; Fumagalli, L. Charge-Polarized Interfacial Superlattices in Marginally Twisted Hexagonal Boron Nitride. Nature Communications, 12, Article number: 347 (2021). https://doi.org/10.1038/s41467-020-20667-2

Stern, M. V.; Waschitz, Y.; Cao, W.; Nevo, I.; Watanabe, K.; Taniguchi, T.; Sela, E.; Urbakh, M.; Hod, O.; Shalom, M. Ben. Interfacial Ferroelectricity by van Der Waals Sliding. Science, 372(6549), 1462–1466 (2021). https://doi.org/10.1126/science.abe8177

P. Zhao, C. Xiao, and Wang Yao, Universal superlattice potential for 2D materials from twisted interface inside h-BN substrate, npj 2D Materials and Applications, 5, Article number: 38 (2021). https://doi.org/10.1038/s41699-021-00221-4

Cui, X.; Sun, L.; Zeng, Y.; Hao, Y.; Liu, Y.; Wang, D.; Yi, Y.; Loh, K. P.; Zheng, J.; Liu, Y. Visualization of Crystallographic Orientation and Twist Angles in Two-Dimensional Crystals with an Optical Microscope. Nano Lett, 20, 6059–6066 (2020). https://doi.org/10.1021/acs.nanolett.0c02098

Luo, Y.; Engelke, R.; Mattheakis, M.; Tamagnone, M.; Carr, S.; Watanabe, K.; Taniguchi, T.; Kaxiras, E.; Kim, P.; Wilson, W. L. In Situ Nanoscale Imaging of Moiré Superlattices in Twisted van Der Waals Heterostructures. Nature Communications, 11, Article number: 4209 (2020). https://doi.org/10.1038/s41467-020-18109-0

Carr, S.; Massatt, D.; Fang, S.; Cazeaux, P.; Luskin, M.; Kaxiras, E. Twistronics: Manipulating the Electronic Properties of Two-Dimensional Layered Structures through Their Twist Angle. Phys. Rev. B, 95, 075420 (2017). https://doi.org/10.1103/PhysRevB.95.075420

S. Behura, P. Nguyen, S. Che, R. Debbarma, V. Berry, J. Am. Chem. Soc. 137, 13060 (2015)

Behura, S.; Nguyen, P.; Debbarma, R.; Che, S.; Seacrist, M. R.; Berry, V. Chemical Interaction-Guided, Metal-Free Growth of Large-Area Hexagonal Boron Nitride on Silicon-Based Substrates. ACS Nano, 11, 4985–4994 (2017). https://doi.org/10.1021/acsnano.7b01666

Geim, A. K.; Grigorieva, I. V. Van Der Waals Heterostructures. Nature, 499, 419–425 (2013). https://doi.org/10.1038/nature12385

Novoselov, K. S.; Mishchenko, A.; Carvalho, A.; Castro Neto, A. H. 2D Materials and van Der Waals Heterostructures. Science, 353(6298), aac9439 (2016). https://doi.org/10.1126/science.aac9439

Liu, Y.; Weiss, N. O.; Duan, X.; Cheng, H. C.; Huang, Y.; Duan, X. Van Der Waals Heterostructures and Devices. Nature Reviews Materials, 1, Article number: 16042 (2016). https://doi.org/10.1038/natrevmats.2016.42

Rode, J. C.; Smirnov, D.; Belke, C.; Schmidt, H.; Haug, R. J. Twisted Bilayer Graphene: Interlayer Configuration and Magnetotransport Signatures. Ann. Phys., 529(11) (2017). https://doi.org/10.1002/andp.201700025

M. Yankowitz, J. Xue, D. Cormode, J.D. Sanchez-Yamagishi, K. Watanabe, T. Taniguchi, P. Jarillo-Herrero, P. Jacquod, B.J. LeRoy, Nat. Phys. 8, 382 (2012)

B. Hunt, J.D. Sanchez-Yamagishi, A.F. Young, M. Yankowitz, B.J. LeRoy, K. Watanabe, T. Taniguchi, P. Moon, M. Koshino, P. Jarillo-Herrero, R.C. Ashoori, Science 340(80), 1427 (2013)

L.A. Ponomarenko, R.V. Gorbachev, G.L. Yu, D.C. Elias, R. Jalil, A.A. Patel, A. Mishchenko, A.S. Mayorov, C.R. Woods, J.R. Wallbank, M. Mucha-Kruczynski, B.A. Piot, M. Potemski, I.V. Grigorieva, K.S. Novoselov, F. Guinea, V.I. Fal’ko, A.K. Geim, Nature 497, 594 (2013)

K. Kim, M. Yankowitz, B. Fallahazad, S. Kang, H.C.P. Movva, S. Huang, S. Larentis, C.M. Corbet, T. Taniguchi, K. Watanabe, S.K. Banerjee, B.J. LeRoy, E. Tutuc, Nano Lett. 16, 1989 (2016)

D. Wang, G. Chen, C. Li, M. Cheng, W. Yang, S. Wu, G. Xie, J. Zhang, J. Zhao, X. Lu, P. Chen, G. Wang, J. Meng, J. Tang, R. Yang, C. He, D. Liu, D. Shi, K. Watanabe, T. Taniguchi, J. Feng, Y. Zhang, G. Zhang, Phys. Rev. Lett. 116, 126101 (2016)

C.R. Woods, F. Withers, M.J. Zhu, Y. Cao, G. Yu, A. Kozikov, M. Ben Shalom, S.V. Morozov, M.M. van Wijk, A. Fasolino, M.I. Katsnelson, K. Watanabe, T. Taniguchi, A.K. Geim, A. Mishchenko, K.S. Novoselov, Nat. Commun. 7, 10800 (2016)

E.Y. Andrei, D.K. Efetov, P. Jarillo-Herrero, A.H. MacDonald, K.F. Mak, T. Senthil, E. Tutuc, A. Yazdani, A.F. Young, Nat. Rev. Mater. 6, 201 (2021)

Z. Liu, F. Liu, and Y. S. Wu, Chinese Phys. B (2014).

S. Deng, A. Simon, and J. Köhler, J. Solid State Chem. (2003).

M. Kang, S. Fang, L. Ye, H. C. Po, J. Denlinger, C. Jozwiak, A. Bostwick, E. Rotenberg, E. Kaxiras, J. G. Checkelsky, and R. Comin, Nat. Commun. (2020).

S. Miyahara, S. Kusuta, and N. Furukawa, Phys. C Supercond. Its Appl. (2007).

S. Zhang, H. H. Hung, and C. Wu, Phys. Rev. A - At. Mol. Opt. Phys. (2010).

W. Wang, B. Wang, Z. Gao, G. Tang, W. Lei, X. Zheng, H. Li, X. Ming, and C. Autieri, Phys. Rev. B (2020).

W. H. Han, S. Kim, I. H. Lee, and K. J. Chang, ArXiv (2019).

Y. Cao, V. Fatemi, S. Fang, K. Watanabe, T. Taniguchi, E. Kaxiras, and P. Jarillo-Herrero, Nature (2018).

Y. Choi, J. Kemmer, Y. Peng, A. Thomson, H. Arora, R. Polski, Y. Zhang, H. Ren, J. Alicea, G. Refael, F. von Oppen, K. Watanabe, T. Taniguchi, and S. Nadj-Perge, Nat. Phys. (2019).

Y. Cao, J. Y. Luo, V. Fatemi, S. Fang, J. D. Sanchez-Yamagishi, K. Watanabe, T. Taniguchi, E. Kaxiras, and P. Jarillo-Herrero, Phys. Rev. Lett. (2016).

E. Laksono, J. N. Leaw, A. Reaves, M. Singh, X. Wang, S. Adam, and X. Gu, Solid State Commun. (2018).

M. H. Naik and M. Jain, Phys. Rev. Lett. (2018).

A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C.Y. Chim, G. Galli, F. Wang, Nano Lett. 10, 1271 (2010)

H.R. Gutierrez, N. Perea-Lopez, A.L. Elias, A. Berkdemir, B. Wang, R. Lv, F. Lopez-Urias, V.H. Crespi, H. Terrones, M. Terrones, Nano Lett. 13, 3447 (2012)

R. Debbarma, S.K. Behura, Y. Wen, S. Che, V. Berry, Nanoscale 10, 20218 (2018)

S. Behura, K.C. Chang, Y. Wen, R. Debbarma, P. Nguyen, S. Che, S. Deng, M.R. Seacrist, V. Berry, I.E.E.E. Nanotechnol, Mag. 11, 33 (2017)

L. Yuan, B. Zheng, J. Kunstmann, T. Brumme, A. B. Kuc, C. Ma, S. Deng, D. Blach, A. Pan, and L. Huang, Nat. Mater. (2020).

J. Choi, M. Florian, A. Steinhoff, D. Erben, K. Tran, L. Sun, J. Quan, R. Claassen, S. Majumder, J. A. Hollingsworth, T. Taniguchi, K. Watanabe, K. Ueno, A. Singh, G. Moody, F. Jahnke, and X. Li, ArXiv (2020).

K. Tran, J. Choi, and A. Singh, ArXiv (2020).

F. Wu, T. Lovorn, and A. H. Macdonald, Phys. Rev. Lett. (2017).

A. Tartakovskii, Nat. Rev. Phys. (2020).

K. Tran, G. Moody, F. Wu, X. Lu, J. Choi, K. Kim, A. Rai, D.A. Sanchez, J. Quan, A. Singh, J. Embley, A. Zepeda, M. Campbell, T. Autry, T. Taniguchi, K. Watanabe, N. Lu, S.K. Banerjee, K.L. Silverman, S. Kim, E. Tutuc, L. Yang, A.H. MacDonald, X. Li, Nature 567, 71 (2019)

K.L. Seyler, P. Rivera, H. Yu, N.P. Wilson, E.L. Ray, D.G. Mandrus, J. Yan, W. Yao, X. Xu, Nature 567, 66 (2019)

Xu, X.; Yao, W.; Xiao, D.; Heinz, T. F. Spin and Pseudospins in Layered Transition Metal Dichalcogenides. Nature Physics, 10, 343–350 (2014). https://doi.org/10.1038/nphys2942

E.M. Alexeev, D.A. Ruiz-Tijerina, M. Danovich, M.J. Hamer, D.J. Terry, P.K. Nayak, S. Ahn, S. Pak, J. Lee, J.I. Sohn, M.R. Molas, M. Koperski, K. Watanabe, T. Taniguchi, K.S. Novoselov, R.V. Gorbachev, H.S. Shin, V.I. Fal’ko, A.I. Tartakovskii, Nature 567, 81 (2019)

Ni, G. X.; McLeod, A. S.; Sun, Z.; Wang, L.; Xiong, L.; Post, K. W.; Sunku, S. S.; Jiang, B. Y.; Hone, J.; Dean, C. R.; Fogler, M. M.; Basov, D. N. Fundamental Limits to Graphene Plasmonics. Nature, 557, 530–533 (2018). https://doi.org/10.1038/s41586-018-0136-9

Dai, S.; Fang, W.; Rivera, N.; Stehle, Y.; Jiang, B. Y.; Shen, J.; Tay, R. Y.; Ciccarino, C. J.; Ma, Q.; Rodan-Legrain, D.; Jarillo-Herrero, P.; Teo, E. H. T.; Fogler, M. M.; Narang, P.; Kong, J.; Basov, D. N. Phonon Polaritons in Monolayers of Hexagonal Boron Nitride. Adv. Mater., 31(37) (2019). https://doi.org/10.1002/adma.201806603

Li, P.; Lewin, M.; Kretinin, A. V.; Caldwell, J. D.; Novoselov, K. S.; Taniguchi, T.; Watanabe, K.; Gaussmann, F.; Taubner, T. Hyperbolic Phonon-Polaritons in Boron Nitride for near-Field Optical Imaging and Focusing. Nature Communications, 6, Article number: 7507 (2015). https://doi.org/10.1038/ncomms8507

Dai, S.; Fei, Z.; Ma, Q.; Rodin, A. S.; Wagner, M.; McLeod, A. S.; Liu, M. K.; Gannett, W.; Regan, W.; Watanabe, K.; Taniguchi, T.; Thiemens, M.; Dominguez, G.; Castro Neto, A. H.; Zettl, A.; Keilmann, F.; Jarillo-Herrero, P.; Fogler, M. M.; Basov, D. N. Tunable Phonon Polaritons in Atomically Thin van Der Waals Crystals of Boron Nitride. Science, 343, (6175), 1125–1129 (2014). https://doi.org/10.1126/science.1246833

Giles, A. J.; Dai, S.; Vurgaftman, I.; Hoffman, T.; Liu, S.; Lindsay, L.; Ellis, C. T.; Assefa, N.; Chatzakis, I.; Reinecke, T. L.; Tischler, J. G.; Fogler, M. M.; Edgar, J. H.; Basov, D. N.; Caldwell, J. D. Ultralow-Loss Polaritons in Isotopically Pure Boron Nitride. Nature Materials, 17, 134–139 (2018). https://doi.org/10.1038/NMAT5047

Jia, Y.; Zhao, H.; Guo, Q.; Wang, X.; Wang, H.; Xia, F. Tunable Plasmon-Phonon Polaritons in Layered Graphene-Hexagonal Boron Nitride Heterostructures. ACS Photonics, 2(7), 907–912 (2015). https://doi.org/10.1021/acsphotonics.5b00099

Dufferwiel, S.; Lyons, T. P.; Solnyshkov, D. D.; Trichet, A. A. P.; Withers, F.; Schwarz, S.; Malpuech, G.; Smith, J. M.; Novoselov, K. S.; Skolnick, M. S.; Krizhanovskii, D. N.; Tartakovskii, A. I. Valley-Addressable Polaritons in Atomically Thin Semiconductors. Nature Photonics, 11, 497–501 (2017). https://doi.org/10.1038/nphoton.2017.125

Gartstein, Y. N.; Li, X.; Zhang, C. Exciton Polaritons in Transition-Metal Dichalcogenides and Their Direct Excitation via Energy Transfer. Phys. Rev. B, 92, 075445 (2015). https://doi.org/10.1103/PhysRevB.92.075445

Dufferwiel, S.; Lyons, T. P.; Solnyshkov, D. D.; Trichet, A. A. P.; Catanzaro, A.; Withers, F.; Malpuech, G.; Smith, J. M.; Novoselov, K. S.; Skolnick, M. S.; Krizhanovskii, D. N.; Tartakovskii, A. I. Valley Coherent Exciton-Polaritons in a Monolayer Semiconductor. Nature Communications, 9, Article number: 4797 (2018). https://doi.org/10.1038/s41467-018-07249-z

Hu, F.; Fei, Z. Recent Progress on Exciton Polaritons in Layered Transition-Metal Dichalcogenides. Advanced Optical Materials, 8(5) (2020). https://doi.org/10.1002/adom.201901003

Epstein, I.; Chaves, A. J.; Rhodes, D. A.; Frank, B.; Watanabe, K.; Taniguchi, T.; Giessen, H.; Hone, J. C.; Peres, N. M. R.; Koppens, F. H. L. Highly Confined In-Plane Propagating Exciton-Polaritons on Monolayer Semiconductors. 2D Materials, 7(3), 035031 (2020). https://doi.org/10.1088/2053-1583/ab8dd4

Sunku, S. S.; Ni, G. X.; Jiang, B. Y.; Yoo, H.; Sternbach, A.; McLeod, A. S.; Stauber, T.; Xiong, L.; Taniguchi, T.; Watanabe, K.; Kim, P.; Fogler, M. M.; Basov, D. N. Photonic Crystals for Nano-Light in Moiré Graphene Superlattices. Science, 362(6419), 1153–1156 (2018). https://doi.org/10.1126/science.aau5144

Hu, F.; Das, S. R.; Luan, Y.; Chung, T. F.; Chen, Y. P.; Fei, Z. Real-Space Imaging of the Tailored Plasmons in Twisted Bilayer Graphene. Phys. Rev. Lett., 119, 247402 (2017). https://doi.org/10.1103/PhysRevLett.119.247402

Huang, B.; Clark, G.; Klein, D. R.; MacNeill, D.; Navarro-Moratalla, E.; Seyler, K. L.; Wilson, N.; McGuire, M. A.; Cobden, D. H.; Xiao, D.; Yao, W.; Jarillo-Herrero, P.; Xu, X. Electrical Control of 2D Magnetism in Bilayer CrI3. Nature Nanotechnology, 13, 544–548 (2018). https://doi.org/10.1038/s41565-018-0121-3

Wang, Z.; Gutiérrez-Lezama, I.; Ubrig, N.; Kroner, M.; Gibertini, M.; Taniguchi, T.; Watanabe, K.; Imamoǧlu, A.; Giannini, E.; Morpurgo, A. F. Very Large Tunneling Magnetoresistance in Layered Magnetic Semiconductor CrI3. Nature Communications, 9, Article number: 2516 (2018). https://doi.org/10.1038/s41467-018-04953-8

McGuire, M. A.; Dixit, H.; Cooper, V. R.; Sales, B. C. Coupling of Crystal Structure and Magnetism in the Layered, Ferromagnetic Insulator Cri3. Chem. Mater., 27(2), 612–620 (2015). https://doi.org/10.1021/cm504242t

Ghazaryan, D.; Greenaway, M. T.; Wang, Z.; Guarochico-Moreira, V. H.; Vera-Marun, I. J.; Yin, J.; Liao, Y.; Morozov, S. V.; Kristanovski, O.; Lichtenstein, A. I.; Katsnelson, M. I.; Withers, F.; Mishchenko, A.; Eaves, L.; Geim, A. K.; Novoselov, K. S.; Misra, A. Magnon- Assisted Tunnelling in van Der Waals Heterostructures Based on CrBr3. Nature Electronics, 1, 344–349 (2018). https://doi.org/10.1038/s41928-018-0087-z

K. Sreenivas, Bull. Mater. Sci. 15, 287 (1992)

S. Oh, H. Hwang, I.K. Yoo, APL Mater. 7, 91109 (2019)

K.T. Butler, J.M. Frost, A. Walsh, Energy Environ. Sci. 8, 838 (2015)

M. Osada, T. Sasaki, APL Mater. 7, 120902 (2019)

Z. Guan, H. Hu, X. Shen, P. Xiang, N. Zhong, J. Chu, C. Duan, Adv. Electron. Mater. 6, 1900818 (2020)

C. Cui, F. Xue, W.-J. Hu, L.-J. Li, Npj 2D Mater. Appl. 2, 18 (2018)

Z. Zheng, Q. Ma, Z. Bi, S. de la Barrera, M.-H. Liu, N. Mao, Y. Zhang, N. Kiper, K. Watanabe, T. Taniguchi, J. Kong, W.A. Tisdale, R. Ashoori, N. Gedik, L. Fu, S.-Y. Xu, P. Jarillo-Herrero, Nature 588, 71 (2020)

Yasuda, K.; Wang, X.; Watanabe, K.; Taniguchi, T.; Jarillo-Herrero, P. Stacking-Engineered Ferroelectricity in Bilayer Boron Nitride. Science, 372(6549), 1458-1462 (2021). https://doi.org/10.1126/science.abd3230

Editorial: 2D Magnetism Gets Hot. Nature Nanotechnology, 13, 269 (2018). https://doi.org/10.1038/s41565-018-0128-9

M. Gibertini, M. Koperski, A.F. Morpurgo, K.S. Novoselov, Nat. Nanotechnol. 14, 408 (2019)

K.F. Mak, J. Shan, D.C. Ralph, Nat. Rev. Phys. 1, 646 (2019)

M. Galbiati, V. Zatko, F. Godel, P. Hirschauer, A. Vecchiola, K. Bouzehouane, S. Collin, B. Servet, A. Cantarero, F. Petroff, M.-B. Martin, B. Dlubak, P. Seneor, A.C.S. Appl, Electron. Mater. 2, 3508 (2020)

J. Su, M. Wang, G. Liu, H. Li, J. Han, T. Zhai, Adv. Sci. 7, 2001722 (2020)

A. Nimbalkar, H. Kim, Nano-Micro Lett. 12, 126 (2020)

D.S. Schulman, A.J. Arnold, S. Das, Chem. Soc. Rev. 47, 3037 (2018)

A. Allain, J. Kang, K. Banerjee, A. Kis, Nat. Mater. 14, 1195 (2015)