Modulus-based synchronous two-stage multisplitting iteration methods for linear complementarity problems

Zhong‐Zhi Bai1, Lili Zhang1
1State Key Laboratory of Scientific and Engineering Computing, Institute of Computational Mathematics and Scientific/Engineering Computing, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, P.O. Box 2719, Beijing, 100190, People’s Republic of China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Bai, Z.-Z.: On the convergence of the multisplitting methods for the linear complementarity problem. SIAM J. Matrix Anal. Appl. 21, 67–78 (1999)

Bai, Z.-Z.: Modulus-based matrix splitting iteration methods for linear complementarity problems. Numer. Linear Algebra Appl. 17, 917–933 (2010)

Bai, Z.-Z., Evans, D.J.: Matrix multisplitting relaxation methods for linear complementarity problems. Int. J. Comput. Math. 63, 309–326 (1997)

Bai, Z.-Z., Evans, D.J.: Matrix multisplitting methods with applications to linear complementarity problems: parallel synchronous and chaotic methods. Réseaux et Systèmes Répartis: Calculateurs Parallelès 13, 125–154 (2001)

Bai, Z.-Z., Evans, D.J.: Matrix multisplitting methods with applications to linear complementarity problems: parallel asynchronous methods. Int. J. Comput. Math. 79, 205–232 (2002)

Bai, Z.-Z., Sun, J.-C., Wang, D.-R.: A unified framework for the construction of various matrix multisplitting iterative methods for large sparse system of linear equations. Comput. Math. Appl. 32, 51–76 (1996)

Bai, Z.-Z., Zhang, L.-L.: Modulus-based synchronous multisplitting iteration methods for linear complementarity problems. Numer. Linear Algebra Appl. (2012). doi: 10.1002/nla.1835

Berman, A., Plemmons, R.J.: Nonnegative Matrices in the Mathematical Sciences. Academic Press, New York (1979)

Cottle, R.W., Pang, J.-S., Stone, R.E.: The Linear Complementarity Problem. Academic Press, San Diego (1992)

Cvetković, Lj.: Some convergence conditions for a class of parallel decomposition-type linear relaxation methods. Appl. Numer. Math. 41, 81–87 (2002)

Cvetković, Lj., Kostić, V.: New subclasses of block H-matrices with applications to parallel decomposition-type relaxation methods. Numer. Algorithms 42, 325–334 (2006)

Cvetković, Lj. , Peña, J.M.: Minimal sets alternative to minimal Geršgorin sets. Appl. Numer. Math. 60, 442–451 (2010)

Dong, J.-L., Jiang, M.-Q.: A modified modulus method for symmetric positive-definite linear complementarity problems. Numer. Linear Algebra Appl. 16, 129–143 (2009)

Frommer, A., Mayer, G.: Convergence of relaxed parallel multisplitting methods. Linear Algebra Appl. 119, 141–152 (1989)

Frommer, A., Szyld, D.B.: H-splittings and two-stage iterative methods. Numer. Math. 63, 345–356 (1992)

Hadjidimos, A., Tzoumas, M.: The principle of extrapolation and the Cayley transform. Linear Algebra Appl. 429, 2465–2480 (2008)

Hadjidimos, A., Tzoumas, M.: Nonstationary extrapolated modulus algorithms for the solution of the linear complementarity problem. Linear Algebra Appl. 431, 197–210 (2009)

Leenaerts, D.M.W., van Bokhoven, W.M.G.: Piecewise Linear Modeling and Analysis. Kluwer Academic, Dordrecht (1998)

Murty, K.G.: Linear Complementarity, Linear and Nonlinear Programming. Heldermann, Berlin (1988)

O’Leary, D.P., White, R.E.: Multi-splittings of matrices and parallel solution of linear systems. SIAM J. Algebraic Discrete Methods 6, 630–640 (1985)

Szyld, D.B., Jones, M.T.: Two-stage and multisplitting methods for the parallel solution of linear systems. SIAM J. Matrix Anal. Appl. 13, 671–679 (1992)

Varga, R.S.: Matrix Iterative Analysis. Springer, Berlin (2000)