Điều chỉnh sự giải phóng dopamine ở vùng nhân đuôi bởi các chất đối kháng thụ thể 5-HT2A và 5-HT2C: Các nghiên cứu PET [11C]raclopride trên chuột

Psychopharmacology - Tập 200 - Trang 487-496 - 2008
Alice Egerton1, Rabia Ahmad2, Ella Hirani2, Paul M. Grasby1
1Division of Neuroscience and Psychological Medicine, Department of Neuroscience and Mental Health, Imperial College London, London, UK
2Hammersmith Imanet Ltd., GE Healthcare, Hammersmith Hospital, London, UK

Tóm tắt

Sự đối kháng tại các thụ thể serotonin 5-HT2A và 5-HT2C điều chỉnh sự giải phóng dopamine (DA) ở vỏ não và vùng nhân đuôi có thể là nguyên nhân của một số khía cạnh hiệu quả lâm sàng của các hợp chất chống loạn thần ‘không điển hình’. Tuy nhiên, chưa có thông tin liệu việc điều chỉnh sự giải phóng DA trung gian bởi thụ thể 5-HT2A/2C có thể được định lượng bằng hình ảnh hóa thần kinh phi xâm lấn hay không, như cần thiết để điều tra các quá trình này ở người. Mục tiêu của nghiên cứu là thực hiện một nghiên cứu khả thi trên chuột để xác định xem việc điều chỉnh bởi thụ thể 5-HT2A/2C của sự giải phóng DA có thể được quan sát bằng hình ảnh điện toán phát positron (PET) hay không. Các con chuột được tiêm hoặc dung dịch kiểm soát, một chất đối kháng 5-HT2A/2C kết hợp (ketanserin, 3 mg/kg i.p.), hoặc chất đối kháng 5-HT2C chọn lọc hơn là SB 206,553 (10 mg/kg i.p.) 30 phút trước khi tiêm chất quét PET DA D2 [11C]raclopride (∼11 MBq) và sau đó được quét trong 60 phút bằng một máy quét động vật nhỏ bốn buồng độ dày cao. Sử dụng cùng một kỹ thuật, việc điều chỉnh sự giảm [11C]raclopride do amphetamine (4 mg/kg) gây ra bởi sự đối kháng 5-HT2A (SR 46349B, 0.2 mg/kg i.v.) cũng được xác định. Phù hợp với việc gia tăng sự giải phóng DA được đo bởi những người khác sử dụng viêm mạch, sự đối kháng 5-HT2C làm giảm đáng kể sự gắn kết [11C]raclopride ở vùng nhân đuôi (p < 0.003), trong khi những giảm do amphetamine gây ra ở sự gắn kết [11C]raclopride ở vùng nhân đuôi (p < 0.001) bị giảm nhẹ sau khi tiêm chất đối kháng 5-HT2A (p = 0.04). Những kết quả này cung cấp thông tin về khả năng giám sát sự điều chỉnh của hệ thống DA trung gian bởi thụ thể 5-HT2A/2C ở người bằng việc sử dụng PET và, nói chung hơn, cho thấy rằng hình ảnh PET với thuốc đánh dấu D2 có thể được sử dụng để giám sát hiệu quả của các chất điều chỉnh DA mới trong việc giảm thiểu sự giải phóng DA kích thích.

Từ khóa

#thụ thể serotonin #5-HT2A #5-HT2C #dopamine #đối kháng #hình ảnh PET #chuột

Tài liệu tham khảo

Ahmad R, Opacka-Juffry J, Houston G, Hirani E, Hume S (2005) The effect of 5-HT2A antagonists on amphetamine-evoked dopamine release in rats, measured by positron emission tomography. Mol Imaging Biol 7(2):152 Alex KD, Pehek EA (2007) Pharmacologic mechanisms of serotonergic regulation of dopamine neurotransmission. Pharmacol Ther 113(2):296–320 Alex KD, Yavanian GJ, McFarlane HG, Pluto CP, Pehek EA (2005) Modulation of dopamine release by striatal 5-HT2C receptors. Synapse 55(4):242–251 Auclair A, Blanc G, Glowinski J, Tassin JP (2004a) Role of serotonin 2A receptors in the d-amphetamine-induced release of dopamine: comparison with previous data on alpha1b-adrenergic receptors. J Neurochem 91(2):318–326 Auclair A, Drouin C, Cotecchia S, Glowinski J, Tassin JP (2004b) 5-HT2A and alpha1b-adrenergic receptors entirely mediate dopamine release, locomotor response and behavioural sensitization to opiates and psychostimulants. Eur J Neurosci 20(11):3073–3084 Berg KA, Stout BD, Cropper JD, Maayani S, Clarke WP (1999) Novel actions of inverse agonists on 5-HT2C receptor systems. Mol Pharmacol 55(5):863–872 Berg KA, Harvey JA, Spampinato U, Clarke WP (2005) Physiological relevance of constitutive activity of 5-HT2A and 5-HT2C receptors. Trends Pharmacol Sci 26(12):625–630 Bubar MJ, Cunningham KA (2007) Distribution of serotonin 5-HT2C receptors in the ventral tegmental area. Neuroscience 146(1):286–297 Chanrion B, Mannoury la Cour C, Gavarini S, Seimandi M, Vincent L, Pujol JF, Bockaert J, Marin P, Millan MJ (2008) Inverse agonist and neutral antagonist actions of antidepressants at recombinant and native 5-HT2C receptors: differential modulation of cell surface expression and signal transduction. Mol Pharmacol 73:748–757 De Deurwaerdère P, Spampinato U (1999) Role of 5-HT2A and 5-HT2C receptor subtypes in the control of accumbal and striatal dopamine release elicited in vivo by dorsal raphe nucleus electrical stimulation. J Neurochem 73:1033–1042 De Deuwaerdère P, Navailles S, Berg KA, Clarke WP, Spampinato U (2004) Constitutive activity of the serotonin2C receptor inhibits in vivo dopamine release in the rat striatum and nucleus accumbens. J Neurosci 24:3235–3241 Dewey SL, Smith GS, Logan J, Alexoff D, Ding YS, King P, Pappas N, Brodie JD (1995) Serotonergic modulation of striatal dopamine measured with positron emission tomography (PET) and in vivo microdialysis. J Neurosci 15(1 Pt 2):821–829 Di Giovanni G, De Deurwaerdère P, Di Mascio M, Di Matteo V, Esposito E, Spampinato U (1999) Selective blockade of serotonin-2C/2B receptors enhances mesolimbic and mesostriatal dopaminergic function: a combined in vivo electrophysiological and microdialysis study. Neuroscience 91:587–597 Di Giovanni G, Di Matteo V, Di Mascio M, Esposito E (2000) Preferential modulation of mesolimbic vs. nigrostriatal dopaminergic function by serotonin2C/2B receptor agonists: a combined in vivo electrophysiological and microdialysis study. Synapse 35:53–61 Di Giovanni G, Di Matteo V, La Grutta V, Esposito E (2001) m-Chlorophenylpiperazine excites non-dopaminergic neurons in the rat substantia nigra and ventral tegmental area by activating serotonin-2C receptors. Neuroscience 103(1):111–116 Di Matteo V, Di Giovanni G, Di Mascio M, Esposito E (1998) Selective blockade of serotonin2C/2B receptors enhances dopamine release in the rat nucleus accumbens. Neuropharmacology 37:265–272 Di Matteo V, Di Giovanni G, Di Mascio M, Esposito E (1999) SB242084, a selective serotonin2c receptor antagonist, increases dopaminergic transmission in the mesolimbic system. Neuropharmacology 38:1195–1205 Duxon MS, Flanigan TP, Reavley AC, Baxter GS, Blackburn TP, Fone KCF (1997) Evidence for expression of the 5-hydroxytryptamine-2B receptor protein in the rat central nervous system. Neuroscience 76:323–329 Eberle-Wang K, Mikeladze Z, Uryu K, Chesselet MF (1997) Pattern of expression of the serotonin2C receptor messenger RNA in the basal ganglia of adult rats. J Comp Neurol 384(2):233–247 Egerton A, Grasby PM (2007) Direct and indirect dopamine challenges for PET imaging. J Psychopharmacol 21(7):MB01 Farde L, Wiesel FA, Jansson P, Uppfeldt G, Wahlen A, Sedvall G (1988) An open label trial of raclopride in acute schizophrenia. Confirmation of D2-dopamine receptor occupancy by PET. Psychopharmacology (Berl) 94:1–7 Forbes IT, Ham P, Booth DH, Martin RT, Thompson M, Baxter GS, Blackburn TP, Glen A, Kennett GA, Wood MD (1995) 5-Methyl-1-(3-pyridylcarbamoyl)-1,2,3,5 tetrahydropyrrolo[2,3-f]indole: a novel 5-HT2C/5-HT2B receptor antagonist with improved affinity, selectivity, and oral activity. J Med Chem 38(14):2524–2530 Glennon RA, Metwally K, Dukat M, Ismaiel AM, De los Angeles J, Herndon J, Teitler M, Khorana N (2002) Ketanserin and spiperone as templates for novel serotonin 5-HT(2A) antagonists. Curr Top Med Chem 2(6):539–558 Gobert A, Millan MJ (1999) Serotonin (5-HT)2A receptor activation enhances dialysate levels of dopamine and noradrenaline, but not 5-HT, in the frontal cortex of freely-moving rats. Neuropharmacology 38(2):315–317 Gobert A, Rivet J-M, Lejeune F, Newman-Tancredi A, Adhumeau-Auclair A, Nicolas JP (2000) Serotonin2C receptors tonically suppress the activity of mesocortical dopaminergic and adrenergic, but not serotonergic, pathways: a combined dialysis and electrophysiological analysis in the rat. Synapse 36:205–221 Herrick-Davis K, Grinde E, Teitler M (2000) Inverse agonist activity of atypical antipsychotic drugs at human 5-hydroxytryptamine2C receptors. J Pharmacol Exp Ther 295(1):226–232 Hirani E, Sharp T, Sprakes M, Grasby P, Hume S (2003) Fenfluramine evokes 5-HT2A receptor-mediated responses but does not displace [11C]MDL 100907: small animal PET and gene expression studies. Synapse 50(3):251–260 Houston GC, Hume SP, Hirani E, Goggi JL, Grasby PM (2004) Temporal characterisation of amphetamine-induced dopamine release assessed with [11C]raclopride in anaesthetised rodents. Synapse 51(3):206–212 Hume SP, Lammertsma AA, Myers R, Rajeswaran S, Bloomfield PM, Ashworth S, Fricker RA, Torres EM, Watson J, Jones T (1996) The potential of high-resolution positron emission tomography to monitor striatal dopaminergic function in rat models of disease. J Neurosci Methods 67:103–112 Hume SP, Gunn RN, Jones T (1998) Pharmacological constraints associated with positron emission tomographic scanning of small laboratory animals. Eur J Nucl Med 25:173–176 Hume S, Hirani E, Opacka-Juffry J, Myers R, Townsend C, Pike V, Grasby P (2001) Effect of 5-HT on binding of [(11)C] WAY 100635 to 5-HT(IA) receptors in rat brain, assessed using in vivo microdialysis and PET after fenfluramine. Synapse 41:150–159 Ichikawa J, Meltzer HY (1995) DOI, a 5-HT2A/2C receptor agonist, potentiates amphetamine-induced dopamine release in rat striatum. Brain Res 698(1–2):204–208 Ichikawa J, Meltzer HY (1999) Relationship between dopaminergic and serotonergic neuronal activity in the frontal cortex and the action of typical and atypical antipsychotic drugs. Eur Arch Psychiatry Clin Neurosci 249(Suppl 4):90–98 Kapur S, Remington G (1996) Serotonin–dopamine interaction and its relevance to schizophrenia. Am J Psychiatry 153(4):466–476 Kennett GA, Wood MD, Bright F, Cilia J, Piper DC, Gager T, Thomas D, Baxter GS, Forbes IT, Ham P, Blackburn TP (1996) In vitro and in vivo profile of SB 206553, a potent 5-HT2C/5-HT2B receptor antagonist with anxiolytic-like properties. Br J Pharmacol 117(3):427–434 Kuroki T, Meltzer HY, Ichikawa J (2003) 5-HT 2A receptor stimulation by DOI, a 5-HT 2A/2C receptor agonist, potentiates amphetamine-induced dopamine release in rat medial prefrontal cortex and nucleus accumbens. Brain Res 972(1–2):216–221 Laruelle M (2000) Imaging synaptic neurotransmission with in vivo binding competition techniques: a critical review. J Cereb Blood Flow Metab 20(3):423–451 Le Masurier M, Houston G, Cowen P, Grasby P, Sharp T, Hume S (2004) Tyrosine-free amino acid mixture attenuates amphetamine-induced displacement of [11C]raclopride in striatum in vivo: a rat PET study. Synapse 51(2):151–157 Lucas G, Spampinato U (2000) Role of striatal serotonin2A and serotonin2C receptor subtypes in the control of in vivo dopamine outflow in the rat striatum. J Neurochem 74:693–701 McKenna DJ, Repke DB, Peroutka SJ (1990) Differential interactions of indolealkylamines with 5-hydroxytryptamine receptor subtypes. Neuropharmacology 29:193–198 Meltzer HY, Matsubara S, Lee JC (1989) Classification of typical and atypical antipsychotic drugs on the basis of dopamine D-1, D-2 and serotinin2 pK i values. J Pharmacol Exp Ther 251:238–246 Meltzer HY, Li Z, Kaneda Y, Ichikawa J (2003) Serotonin receptors: their key role in drugs to treat schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 27(7):1159–1172 Meltzer HY, Arvanitis L, Bauer D, Rein W, Meta-Trial Study Group (2004) Placebo-controlled evaluation of four novel compounds for the treatment of schizophrenia and schizoaffective disorder. Am J Psychiatry 161(6):975–984 Montgomery AJ, Asselin MC, Farde L, Grasby PM (2007) Measurement of methylphenidate-induced change in extrastriatal dopamine concentration using [11C]FLB 457 PET. J Cereb Blood Flow Metab 27(2):369–377 Moresco RM, Pietra L, Henin M, Panzacchi A, Locatelli M, Bonaldi L, Carpinelli A, Gobbo C, Bellodi L, Perani D, Fazio F (2007) Fluvoxamine treatment and D2 receptors: a pet study on OCD drug-naive patients. Neuropsychopharmacology 32(1):197–205 Myers R, Hume S (2002) Small animal PET. Eur Neuropsychopharmacol 12:545–555 Nash JF (1990) Ketanserin pre-treatment attenuates MDMA-induced dopamine release in the striatum as measured by in vivo microdialysis. Life Sci 47(26):2401–2408 Navailles S, Moison D, Ryczko D, Spampinato U (2006) Region-dependent regulation of mesoaccumbens dopamine neurons in vivo by the constitutive activity of central serotonin2C receptors. J Neurochem 99(4):1311–1319 Ng NK, Lee HS, Wong PT (1999) Regulation of striatal dopamine release through 5-HT1 and 5-HT2 receptors. J Neurosci Res 55(5):600–607 Olijslagers JE, Werkman TR, McCreary AC, Siarey R, Kruse CG, Wadman WJ (2004) 5-HT2 receptors differentially modulate dopamine-mediated auto-inhibition in A9 and A10 midbrain areas of the rat. Neuropharmacology 46(4):504–510 Porras G, Di Matteo V, Fracasso C, Lucas G, De Deurwaerdère P, Caccia S, Esposito E, Spampinato U (2002) 5-HT2A and 5-HT2C/2B receptor subtypes modulate dopamine release induced in vivo by amphetamine and morphine in both the rat nucleus accumbens and striatum. Neuropsychopharmacology 26:311–324 Potkin SG, Shipley J, Bera RB, Carreon D, Fallon J, Alva G, Keator D (2001) Clinical and PET effects of M100907, a selective 5-HT-2A receptor antagonist. Schizophr Res 49(Suppl. 1):242 Prisco S, Pagannone S, Esposito E (1994) Serotonin-dopamine interaction in the rat ventral tegmental area: an electrophysiological study in vivo. J Pharmacol Exp Ther 271(1):83–90 Rinaldi-Carmona M, Congy C, Santucci V, Simiand J, Gautret B, Neliat G, Labeeuw B, Le Fur G, Soubrie P, Breliere JC (1992) Biochemical and pharmacological properties of SR 46349B, a new potent and selective 5-hydroxytryptamine2 receptor antagonist. J Pharmacol Exp Ther 262(2):759–768 Robb RA, Hanson DP (1991) A software system for interactive and quantitative visualization of multidimensional biomedical images. Australas Phys Eng Sci Med 14:930 Roth BL, Ciaranello RD, Meltzer HY (1992) Binding of typical and atypical antipsychotic agents to transiently expressed 5-HT1C receptors. J Pharmacol Exp Ther 260:1361–1365 Rothman RB, Baumann MH (2006) Balance between dopamine and serotonin release modulates behavioral effects of amphetamine-type drugs. Ann N Y Acad Sci 1074:245–260 Schmidt CJ, Fadayel GM (1996) Regional effects of MK-801 on dopamine release: effects of competitive NMDA or 5-HT2A receptor blockade. J Pharmacol Exp Ther 277:1541–1549 Schmidt CJ, Fadayel GM, Sullivan CK, Taylor VL (1992) 5-HT2 receptors exert a state-dependent regulation of dopaminergic function: studies with MDL 100,907 and the amphetamine analogue, 3,4-methylenedioxymethamphetamine. Eur J Pharmacol 223:65–74 Shah F, Hirani E, Hume SP, Osman S, Pike VW (1998) [N-methyl-C-11]SR 46349B—examination as a radioligand for brain 5-HT2A receptors in rat in vivo. J Nucl Med 39(5):237P–237P 1044 Suppl. S Sorensen SM, Kehne JH, Fadayel GM, Humphreys TM, Ketteler HJ, Sullivan CK, Taylor VL, Schmidt CJ (1993) Characterization of the 5-HT2 receptor antagonist MDL 100907 as a putative atypical antipsychotic: behavioral, electrophysiological and neurochemical studies. J Pharmacol Exp Ther 266(2):684–691 Tan PZ, Baldwin RM, Van Dyck CH, Al-Tikriti M, Roth B, Khan N, Charney DS, Innis RB (1999) Characterization of radioactive metabolites of 5-HT2A receptor PET ligand [18F]altanserin in human and rodent. Nucl Med Biol 26(6):601–608 Tassin JP (2008) Uncoupling between noradrenergic and serotonergic neurons as a molecular basis of stable changes in behavior induced by repeated drugs of abuse. Biochem Pharmacol 75(1):85–97 Tsukada H, Nishiyama S, Kakiuchi T, Ohba H, Sato K, Harada N (1999) Is synaptic dopamine concentration the exclusive factor which alters the in vivo binding of [11C]raclopride?: PET studies combined with microdialysis in conscious monkeys. Brain Res 841(1–2):160–169 Villemagne VL, Wong DF, Yokoi F, Stephane M, Rice KC, Matecka D, Clough DJ, Dannals RF, Rothman RB (1999) GBR12909 attenuates amphetamine-induced striatal dopamine release as measured by [(11)C]raclopride continuous infusion PET scans. Synapse 33(4):268–273 Vollenweider FX, Vontobel P, Hell D, Leenders KL (1999) 5-HT modulation of dopamine release in basal ganglia in psilocybin-induced psychosis in man—a PET study with [11C]raclopride. Neuropsychopharmacology 20(5):424–433 Weiner DM, Burstein ES, Nash N, Croston GE, Currier EA, Vanover KE et al (2001) 5-Hydroxytryptamine2a receptor inverse agonists as antipsychotics. J Pharmacol Exp Ther 299(1):268–276