Modulation of L-type Ca2+ currents and intracellular calcium by agmatine in rat cardiomyocytes

Alexander V. Maltsev1, Miroslav N. Nenov1, Oleg Y. Pimenov1, Yu. M. Kokoz1
1Institute of Theoretical and Experimental Biophysics, Russian Academy of Science, Pushchino, Moscow oblast, Russia

Tóm tắt

Từ khóa


Tài liệu tham khảo

Raasch W., Regunathan S., Li G., Reis D.J. 1995. Agmatine, the bacterial amine, is widely distributed in mammalian tissues. Life Sci. 56, 2319–2330.

Gao Y., Gumusel B., Koves G., Prasad A., Hao Q., Hyman A., Lippton H. 1995. Agmatine: a novel endogenous vasodilator substance. Life Sci. 57, 83–86.

Sun M.K., Regunathan S., Reis D.J. 1995. Cardiovascular responses to agmatine, a clonidine-displacing substance, in anesthetized rat. J. Clin. Exp. Hypertens. 17, 115–128.

Greenberg S., George J., Wollman Y., Shapira I., Laniado S., Keren G. 2001. The effect of agmatine administration on ischemic-reperfused isolated rat heart. J. Cardiovasc. Pharmacol. Ther. 6, 37–45.

Regunathan S., Reis D.J. 1997. Stimulation of imidazoline receptors inhibits proliferation of human coronary artery vascular smooth muscle cells. J. Hypertension. 30, 295–300.

Xiao-Tao L., Zhen-Zhong F., Rui-Rong H. 1999. Electrophysiologic effects of agmatine on pacemaker cells in sinoatrial node of rabbits. J. Acta Pharmacol. Sin. 20, 897–901.

Qing L., Jing-Xiang Y., Rui-Rong H. 2002. Effect of agmatine on L-type calcium current in rat ventricular myocytes. Acta Pharmacol. Sin. 23, 219–224.

Qing L., Zhong-Lin S., Jing-Xiang Y., Yi-He W., Rui-Rong H. 2002. Effect of agmatine on intracellular free calcium concentration in isolated rat ventricular myocytes. Acta Pharmacol. Sin. 54, 467–472.

Auguet M., Viossat I., Marin J.G., Chabrier P.E. 1995. Selective inhibition of inducible nitric oxide synthase by agmatine. Jpn. J. Pharmacol. 69, 285–287.

Galea E., Regunathan S., Eliopoulos V., Feinstein D.L., Reis D.J. 1996. Inhibition of mammalian nitric oxides synthases by agmatine, an endogenous polyamine formed by decarboxylation of arginine. Biochem. J. 313, 247–249.

Joshi M.S., Ferguson T.B., Johnson F.K., Johnson R.A., Parthasarathy S., Lancaster J.R. 2007. Receptor-mediated activation of nitric oxide synthesis by arginine in endothelial cells. Proc. Natl. Acad. Sci. USA. 104, 9982–9987.

Schwarz D., Peterson O.W., Mendonka M., Satriano J., Lortie M., Blantz R.S. 1997. Agmatine affects glomerular filtration via nitric oxide synthase-dependent mechanism. Am. J. Physiol. Renal. Physiol. 272, 597–601.

Alekseev A.E., Korystova A.F., Mavlyutova D.A., Kokoz Yu.M. 1994. Potential-dependent Ca2+ current in isolated heart cells of hibernators. Biochem. Mol. Biol. Int. 33, 365–376.

Chen W., Aistrup G., Wasserstrom J.A., Shiferaw Y. 2011. A mathematical model of spontaneous calcium release in cardiac myocytes. Am. J. Physiol. 300, 1794–1805.

Groff J.R., Smith G.D. 2008. Ryanodine receptor allosteric coupling and the dynamics of calcium sparks. Biophys. J. 95, 135–154.

Chen W., Wasserstrom J.A., Shiferaw Y. 2009. Role of coupled gating between cardiac ryanodine receptors in the genesis of triggered arrhythmias. Am. J. Physiol. Heart Circ. Physiol. 297, 171–180.

Ter Keurs H.E., Boyden P.A. 2007. Calcium and arrhythmogenesis. Physiol. Rev. 87, 457–506.

Qing L., Rui-Rong H. 2001. Hemodynamic effects of agmatine in Dahl salt-sensitive hypertensive and Dahl salt-resistant rats. J. Acta Physiol. Sin. 53, 355–360.

Maltsev A.V., Evdokimovskii E.V., Pimenov O.Y., Nenov M.N., Kokoz Yu.M. 2012. Regulation of potential-dependent L-type Ca2+ currents by agmatine. Imidazoline receptors in isolated cardiomyocytes. Biochem. (Moscow) Suppl. Series A (in print).

Shepherd R.M., Hashmi M.N., Kane C., Squires P.E., Dunne M.J. 1996. Elevation of cytosolic calcium by imidazolines in mouse islets of Langerhans: Implications for stimulus-response coupling of insulin release. Br. J. Pharmacol. 119, 911–916.

Adachi T., Weisbrod R.M., Pimentel D.R., Ying J., Sharov V.S., Schoneich C., Cohen R.A. 2004. S-Glutathiolation by peroxynitrite activates SERCA during arterial relaxation by nitric oxide. Nat. Med. 10, 1200–1207.

Tong X., Evangelista A., Cohen R.A. 2010. Targeting the redox regulation of SERCA in vascular physiology and disease. Curr. Opin. Pharmacol. 10, 133–138.

Garofalo F., Parisella M.L., Amelio D., Tota B., Imbrogno S. 2009. Phospholamban S-nitrosylation modulates Starling response in fish heart. Proc. Biol. Sci. 276, 4043–4052.

Raasch W., Schäfer U., Chun J., Dominiak P. 2001. Biological significance of agmatine, an endogenous ligand at imidazoline binding sites. Br. J. Pharmacol. 133(6), 755–780.

Molderings G.J., Haenisch B. 2012. Agmatine (decarboxylated L-arginine): physiological role and therapeutic potential. J. Pharmacol. Ther. 133(3), 351–365.

Winter T.N., Elmquist W.F., Fairbanks C.A. 2011. OCT2 and MATE1 provide bidirectional agmatine transport. J. Mol. Pharmacol. 8(1), 133–142.

Lei L., Slavica M., Ernsberger P., Graves M.E., Patil P.N., Miller D.D., Feller D. 1995. Calcium channel-dependent and I1-imidazoline receptor binding properties of 2-(4’-isothiocyantobenzyl)-imidazoline analogs in vascular and brain tissues. Ann. N.Y. Acad. Sci. 763, 283–286.

Shepherd R.M., Hashmi M.N., Kane C., Squires P.E., Dunne M.J. 1996. Elevation of cytosolic calcium by imidazolines in mouse islets of Langerhans: Implications for stimulus-response coupling of insulin release. Br. J. Pharmacol. 119, 911–916.

Musgrave I.F., Krautwurst D., Schultz G. 1996. Imidazoline binding sites and signal transduction pathways. Clin. Exp. Pharmacol. Physiol. 23, 990–994.

Chu T.C., Wong W., Gluchowski C., Hughes B.W., Potter D.E. 1996. Rilmenidine-induced ocular hypotension: Role of imidazoline-1 and α2-receptors. Curr. Eye Res. 15, 943–950.

Avanza A.C., Mansur A.P., Ramires J.A. 2009. Efficacy of exercise, losartan, enalapril, atenolol and rilmenidine in subjects with blood pressure hyperreactivity at treadmill stress test and left ventricular hypertrophy. J. Hum. Hypertens. 23, 259–266.

Fenton C., Keating G.M., Lyseng-Williamson K.A. 2006. Moxonidine: A review of its use in essential hypertension. Drugs. 66, 477–496.

Iwasaki M., Hayashi Y., Kamibayashi T., Yamatodani A., Mashimo T. 2008. The antiarrhythmic effect of centrally administered rilmenidine involves muscarinic receptors, protein kinase C and mitochondrial signalling pathways. Br. J. Pharmacol. 153, 1623–1630.

Parati G., Esler M. 2012. The human sympathetic nervous system: Its relevance in hypertension and heart failure. Eur. Heart J. 33, 1058–1066.