Modular andp-adic cyclic codes

Designs, Codes and Cryptography - Tập 6 Số 1 - Trang 21-35 - 1995
A.R. Calderbank1, N. J. A. Sloane1
1Mathematical Sciences Research Center, AT&T Bell Laboratories, Murray Hill

Tóm tắt

Từ khóa


Tài liệu tham khảo

E. F. Assmus, Jr., and J. D. Key,Designs and Their Codes, Cambridge Univ. Press (1992).

E. F. Assmus, Jr., and H. F. Mattson, Jr., New 5-designs,J. Combinat. Theory, Vol. 6 (1969) pp. 122?151.

G. Bachman,Introduction to p-Adic Numbers and Valuation Theory, Academic Press, New York (1964).

R. E. Blahut, The Gleason-Prange theorem,IEEE Trans. Inform. Theory, Vol. 37 (1991) pp. 1269?1273.

I. F. Blake, Codes over certain rings,Inform. Control, Vol. 20 (1972) pp. 396?404.

I. F. Blake, Codes over integer residue rings,Inform. Control., Vol. 29 (1975) pp. 295?300.

A. Bonnecaze and P. Solé, Quanternary constructions of formally self-dual binary codes and unimodular lattices,Lect. Notes Computer Sci., Vol. 781 (1994) pp. 194?206.

Z. I. Borevich and I. R. Shafarevich,Number Theory, Academic Press, New York (1966).

G. Caire and E. Biglieri, Linear codes over cyclic groups, preprint, Sept., 1993.

A. R. Calderbank,Topics in Algebraic Coding Theory, Ph.D. dissertation, California Institute of Technology, Pasadena, Calif., 1980.

J. H. Conway and N. J. A. Sloane,Sphere Packings, Lattices and Groups, Springer-Verlag, New York, 2nd edition (1993).

J. H. Conway and N. J. A. Sloane, Self-dual codes over the integers modulo 4,J. Combinat. Theory, Vol. A62 (1993) pp. 30?45.

C. W. Curtis and I. Reiner,Representation Theory of Finite Groups and Associative Algebras, Wiley (1962).

G. D. Forney, Jr., N. J. A. Sloane and M. Trott, The Nordstrom-Robinson code is the binary image of the octacode, in A. R. Calderbank et al. (eds.),Coding and Quantization: DIMACS/IEEE Workshop 1992, Amer. Math. Soc. (1993) pp. 19?26.

F. Q. Gouvêa,p-adic Numbers, Springer-Verlag, New York (1993).

A. R. Hammons, Jr., P. V. Kumar, A. R. Calderbank, N. J. A. Sloane, and P. Solé, The ?4 of Kerdock, Preparata, Goethals and related codes,IEEE Trans. Inform. Theory, Vol. 40 (1994) pp. 301?319.

N. Koblitz,p-adic Numbers, p-adic Analysis, and Zeta-Functions, Springer-Verlag, New York (1977).

F. J. MacWilliams and N. J. A. Sloane,The Theory of Error-Correcting Codes, North-Holland, Amsterdam (1977).

B. R. McDonald,Finite Rings with Identity, Dekker, New York (1974).

D. W. Newhart, Information sets in quadratic residue codes,Discrete Math., Vol. 42 (1982) pp. 251?266.

R. M. Roth and P. H. Siegel, A family of BCH codes for the Lee metric, preprint.

P. Shankar, On BCH codes over arbitrary integer rings,IEEE Trans. Inform. Theory, Vol. 25 (1979) pp. 480?483.

P. Solé, Open problem 2: cyclic codes over rings andp-adic fields, in G. Cohen and J. Wolfmann (eds.),Coding Theory and Applications, Lecture Notes in Computer Science, Springer-Verlag, New York, 388, (1988) p. 329.

E. Spiegel, Codes over ? m ,Inform. Control, Vol. 35 (1977) pp. 48?51.

E. Spiegel, Codes over ? m , revisited,Inform. Control, Vol. 37 (1978) pp. 100?104.

S. K. Wasan, On codes over ? m ,IEEE Trans. Inform. Theory, Vol. 28 (1982) pp. 117?120.

M. Yamada, Distance-regular digraphs of girth 4 over an extension ring of ?/4?,Graphs and Combinatorics, Vol. 6 (1990) pp. 381?394.

O. Zariski and P. Samuel,Commutative Algebra, Van Nostrand, New York, Vol. 1 (1958).