Modified differential overlap factor and modal gain equalization criteria-based comparative analysis of 4M-EDFA 980;1480 nm towards identification of a unique erbium doping profile for the 4M-EDFA1480 nm system

Springer Science and Business Media LLC - Tập 22 - Trang 648-668 - 2023
Suhail K. Naik1, Gausia Qazi1
1Department of Electronics and Communication Engineering, National Institute of Technology Srinagar, Srinagar, India

Tóm tắt

A four-mode erbium-doped fiber amplifier (4M-EDFA) system with $${\mathrm{LP}}_{01;980 \mathrm{nm}}$$ and $${\mathrm{LP}}_{01;1480 \mathrm{nm}}$$ pump wavelengths is explored analytically using a coupled mode equation and subsequently through simulations by implementing modified erbium-doped profile-based systems. We aim to reduce the inherent differential modal gain (DMG) and differential spectral gain (DSG) between signal modes $${\mathrm{LP}}_{01}, {\mathrm{LP}}_{11}, {\mathrm{LP}}_{21}$$ and $${\mathrm{LP}}_{02}$$ while maintaining high modal gain. For in-depth performance evaluation and comparison of 4M- $${\mathrm{EDFA}}_{980\, \mathrm{nm};1480\,\mathrm{nm}}$$ systems, novel differential performance parameters are introduced and explored. Differential modal noise figure (DMNF) and differential spectral noise figure (DSNF) parameters quantify the impact of system amplified spontaneous emission. The conventional erbium ion inclusive transverse overlap factor is modified ( $${\eta }_{\mathrm{sp}}$$ ) using a unit-less erbium ion profile over a scale of 0–1. Differential modal overlap factor (DMOF) and differential spectral overlap factor (DSOF) are shown to be strongly correlated with DMG and DSG, respectively, and prove to be more decisive performance evaluation parameters than $${\eta }_{\mathrm{sp}}$$ . Obtaining low DMOF and DSOF values with the 1480 nm pump prompts the investigation of 4M- $${\mathrm{EDFA}}_{1480\,\mathrm{nm}}$$ with erbium ion profile variants: uniform $$N\left(r\right)$$ = 1, $${N}_{\mathrm{inv}}\left(r\right)$$ and $${N}_{\mathrm{opt} }(r)$$ . $${N}_{\mathrm{inv}}\left(r\right)$$ is extracted from the inverse sum of the normalized signal intensity function. Subsequently, differential modal gain equalization criteria are used which aid in unique linearizing $${N}_{\mathrm{opt} }(r)$$ profile identification. In the 4M-EDFA system, the highest values (in dB) of DMG, DSG, DMNF and DSNF are 13.295, 3.9717, 5.9996, 11.0649, respectively, for the 980 nm uniform erbium ion profile system. The proposed $${N}_{\mathrm{opt}}(r)$$ profile significantly reduces these parameters (in dB) to 2.0558, 2.4997, 2.77 and 3.879, respectively, for the 1480 nm system.

Tài liệu tham khảo

Richardson, D.J., Fini, J.M., Nelson, L.E.: Space division multiplexing in optical fibres. Nat. Photon. 7(5), 354–362 (2013) Zhu, B., et al.: Space-, wavelength-, polarization-division multiplexed transmission of 56-Tb/s over a 76.8-km seven-core fiber. In: National Fiber Optic Engineers Conference. Optica Publishing Group. PDPB7 (2011) Vigneswaran, D., Rajan, Singh, M., Malhotra, J.: System investigations of few-mode erbium-doped fiber amplifier (FM-EDFA) for vortex mode amplifications. J. Comput. Electron. 20(4), 1549–1559 (2021). https://doi.org/10.1007/s10825-021-01721-8 Puttnam, B.J., et al.: High data-rate and long distance MCF transmission with 19-core C+L band cladding-pumped EDFA. J. Lightwave Technol. 38(1), 123–130 (2020). https://doi.org/10.1109/JLT.2019.2946879 Chang, Y., et al.: Demonstration of an all-fiber cladding-pumped FM-EDFA with low differential modal gain. Opt. Laser Technol. 155, 108446 (2022). https://doi.org/10.1016/j.optlastec.2022.108446 Kim, M.S., Kim, B.G., Bae, S.H., Chung, Y.C.: Effects of multi-level format in MMF system based on mode-field matched center-launching technique. IEEE Photon. Technol. Lett. 30(22), 1972–1975 (2018). https://doi.org/10.1109/LPT.2018.2873822 Saitoh, K.: Few-mode multi-core fibres: weakly-coupling and randomly-coupling. In: 2020 European Conference on Optical Communications, pp. 1–4. IEEE (2020) Wakayama, Y., Soma, D., Beppu, S., Sumita, S., Igarashi, K., Tsuritani, T.: 266.1-Tbit/s transmission over 90.4-km 6-mode fiber with inline dual C-band 6-mode EDFA. J. Lightwave Technol. 37(2), 404–410 (2019). https://doi.org/10.1109/JLT.2018.2876730 Salsi M., et al.: A six-mode erbium-doped fiber amplifier. In: European Conference and Exhibition on Optical Communication, Optical Society of America. Th-3 (2012) Zhu, J., et al.: Weakly-coupled MDM-WDM amplification and transmission based on compact FM-EDFA. J. Lightwave Technol. 38(18), 5163–5169 (2020). https://doi.org/10.1109/JLT.2020.3001008 Bai, N., Ip, E., Wang, T., Li, G.: Multimode fiber amplifier with tunable modal gain using a reconfigurable multimode pump. Opt. Express 19(17), 16601–16611 (2011) Qayoom, T., Qazi, G.: On the analysis and comparison of decoupled modal gain equalization systems for four-mode (4M)-EDFAs. Optik (2020). https://doi.org/10.1016/j.ijleo.2020.164498 Gaur, A., Rastogi, V.: Design and analysis of annulus core few mode EDFA for modal gain equalization. IEEE Photon. Technol. Lett. 28(10), 1057–1060 (2016). https://doi.org/10.1109/LPT.2016.2528502 Gaur, A., Rastogi, V.: Gain equalization of six mode groups using trench-assisted annular core EDFA. In: 2015 Workshop on Recent Advances in Photonics (WRAP), pp. 1–4. IEEE (2015) Ryf, R., et al.: 32-bit/s/Hz spectral efficiency WDM transmission over 177-km few-mode fiber. In: Optical Fiber Communication Conference. Optical Society of America (2013) Ip, E.: Gain equalization for few-mode fiber amplifiers beyond two propagating mode groups. IEEE Photon. Technol. Lett. 24(21), 1933–1936 (2012). https://doi.org/10.1109/LPT.2012.2219521 Qayoom, T., Qazi, G., Najeeb-ud-din, H.: Evolution of amplified spontaneous emission and characterization of an optimized two-mode EDFA system obtained from an extended analytical model. J. Comput. Electron. 19(4), 1660–1669 (2020). https://doi.org/10.1007/s10825-020-01566-7 Kang, Q., et al.: Accurate modal gain control in a multimode erbium doped fiber amplifier incorporating ring doping and a simple LP01 pump configuration. Opt. Express 20(19), 20835 (2012). https://doi.org/10.1364/oe.20.020835 Qayoom, T., Qazi, G., Najeeb-ud-din, H.: Design, characterization and performance evaluation of few-mode EDFA system with propagation up to six modes. Opt. Quantum Electron. 52(10), 1–19 (2020). https://doi.org/10.1007/s11082-020-02561-9 Eznaveh Z.S., et al.: Ultra-low DMG multimode EDFA. In: Optical Fiber Communication Conference. Optica Publishing Group. Th4A-4 (2017) Fang, Y., Zeng, Y., Qin, Y., Xu, O., Li, J., Fu, S.: Design of ring-core few-mode-EDFA with the enhanced saturation input signal power and low differential modal gain. IEEE Photon. J. 13(4), 1–6 (2021). https://doi.org/10.1109/JPHOT.2021.3095123 Ono, H., Miyamoto, Y., Mizuno, T., Yamada, M.: Gain control in multi-core erbium-doped fiber amplifier with cladding and core hybrid pumping. J. Lightwave Technol. 37(13), 3365–3372 (2019). https://doi.org/10.1109/JLT.2019.2915939 Zhang, Z., et al.: 21 spatial mode erbium-doped fiber amplifier for mode division multiplexing transmission. Opt. Lett. 43(7), 1550 (2018). https://doi.org/10.1364/ol.43.001550 Malakzadeh, A., Pashaie, R., Mansoursamaei, M.: Gain and noise figure performance of an EDFA pumped at 980 nm or 1480 nm for DOFSs. Opt. Quantum Electron. 52(2), 1–16 (2020). https://doi.org/10.1007/s11082-019-2186-0 Jeurink, S., Krummrich, P.M.: Multimode EDFA with Scalable Mode Selective Gain Control at 1480-nm Pump Wavelength. IEEE Photon. Technol. Lett. 30(9), 849–852 (2018). https://doi.org/10.1109/LPT.2018.2819241 Desurvire, E.: Erbium-Doped Fiber Amplifiers: Principles and Applications. Wiley, Hoboken (1994) Ghatak, A., Thyagarajan, K.: An Introduction to Fiber Optics. Cambridge University Press, Cambridge (1998) Gaur, A., Kumar, G., Rastogi, V.: Dual-core few mode EDFA for amplification of 20 modes. Opt. Quantum Electron. 50(2), 1–10 (2018). https://doi.org/10.1007/s11082-018-1322-6 Herbster, A., Romero, M.A.: On the design of few-mode Er-doped fiber amplifiers for space-division multiplexing optical communications systems. Opt. Model. Des. III(9131), 268–276 (2014). https://doi.org/10.1117/12.2052038 OptiSystem version 16, Optical communication system design software, Canada.