Modified defect relations for the Gauss map of minimal surfaces

Journal of Differential Geometry - Tập 29 Số 2 - 1989
Hirotaka Fujimoto

Tóm tắt

Từ khóa


Tài liệu tham khảo

[9] D. A. Hoffman and R. Osserman, The geometry of the generalized Gauss map, Mem. Amer. Math. Soc. No. 236, 1980.

[1] L. A. Ahlfors, Conformal invariants, Topics in Geometric Function Theory, McGraw-Hill, New York, 1973.

[2] C. C. Chen, On the image of the generalized Gauss map of a complete minimal surface in 4, Pacific J. Math. 102 (1982) 9-14.

[3] S. S. Chern and R. Osserman, Complete minimal surface in euclidean n-space, J. Analyse Math. 19 (1967) 15-34.

[4] M. J. Cowen and P. A. Griffiths, Holomorphic curves and metrics on negative curvature, J. Analyse Math. 29 (1976) 93-153.

[5] H. Fujimoto, On the Gauss map of a complete minimal surface in Rm, J. Math. Soc. Japan 35 (1983) 279-288.

[6] H. Fujimoto, Value distribution of the Gauss map of complete minimal surfaces in Rm, J. Math. Soc. Japan 35 (1983) 663-681.

[7] H. Fujimoto, Non-integrated defect relation for meromorphic maps of complete Kahler manifolds into [math], Japan. J. Math. 11 (1985) 233-264.

[8] H. Fujimoto, On the number of exceptional values of the Gauss map of minimal surfaces, J. Math. Soc. Japan, 40 (1988) 235-247.

[10] R. Osserman, Minimal surfaces in the large, Comment. Math. Helv. 35 (1961) 65-76.

[11] R. Osserman, Global properties of minimal surfaces in E3 and En, Ann. of Math. (2) 80 (1964) 340-364.

[12] R. Osserman, A survey of minimal surfaces, Van Nostrand Reinhold, New York, 1969.

[13] B. V. Shabat, Distribution of values of holomorphic mappings, Transl. Math. Monographs, Vol. 61, Amer. Math. Soc, Providence, RI, 1985.

[14] F. Xavier, The Gauss map of a complete non-flat minimal surface cannot omit 7 points of the sphere, Ann. of Math. (2) 113 (1981) 211-214.