Modified R.E.N.A.L nephrometry score for predicting the outcome following partial nephrectomy

Mohammed Salah1, Mohammed S. ElSheemy1, Waleed Ghoneima1, Mahmoud Abd El Hamid1, Ahmad Kassem1, Ahmed Abdallah Ashmawy1, Ismail R. Saad1, Ashraf A. Mosharafa1, Hosni Salem1, Hesham Badawy1, A.M. Salem1
1Urology Department, Kasr Al-Ainy Hospitals, Faculty of Medicine, Cairo University, Cairo, Egypt

Tóm tắt

AbstractBackgroundIt was difficult to compare the outcome of partial nephrectomy among different studies due to the absence of standardized description of different renal masses. This problem led to the development of nephrometry scoring systems. R.E.N.A.L. is among the commonest nephrometry scoring systems; however, some studies failed to find any relation between R.E.N.A.L. with perioperative outcome. We evaluated our designed newly modified nephrometry score in prediction of outcome following partial nephrectomy and compared its predictability versus original R.E.N.A.L.MethodsFifty-one patients with cT1-2N0M0renal masses amenable for partial nephrectomy were included prospectively. Different perioperative outcome variables were compared according to complexity level in R.E.N.A.L. and the newly modified nephrometry score.ResultsClinical staging was T1a (21.6%), T1b (49%), T2a (25.5%), T2b (3.9%). Median R.E.N.A.L. was 9 (4–12). Hilar position and intrarenal pelvis were detected in 19.6% and 68.6%. Low, moderate and high complexity masses were found in 21.6%, 39.2% and 39.2%. Complications and rate of conversion to radical nephrectomy were 17 (33.3%) and 4 (7.8%). The only significantly affected variable (p = 0.039) by R.E.N.A.L. was rate of secondary intervention, but it was higher in low than in high complexity level. In the newly modified nephrometry score, complications (p = 0.037) and rate of positive surgical margin (p = 0.049) were significantly higher with increased complexity level. Although other variables (pelvi-calyceal system entry, operative time, blood loss, hemoglobin loss, blood transfusion and conversion to radical nephrectomy) did not show statistically significant difference according to both scores, they were better associated with the complexity level in the newly modified nephrometry score with their remarkable increase in the high when compared to the low complexity level.ConclusionsThe newly modified nephrometry score was associated with better prediction of outcome of partial nephrectomy when compared to R.E.N.A.L.

Từ khóa


Tài liệu tham khảo

Hollingsworth JM, Miller DC, Daignault S et al (2006) Rising incidence of small renal masses: a need to reassess treatment effect. J Natl Cancer Inst 98(18):1331–1334

Mir MC, Derweesh I, Porpiglia F et al (2017) Partial nephrectomy versus radical nephrectomy for clinical T1b and T2 renal tumors: a systematic review and meta-analysis of comparative studies. Eur Urol 71(4):606–617 (Review)

McKiernan J, Simmons R, Katz J et al (2002) Natural history of chronic renal insufficiency after partial and radical nephrectomy. Urology 59(6):816–820

Uzzo RG, Novick AC (2001) Nephron sparing surgery for renal tumors: indications, techniques and outcomes. J Urol 166(1):6–18

Kunkle DA, Egleston BL, Uzzo RG (2008) Excise, ablate or observe: the small renal mass dilemma–a meta-analysis and review. J Urol 179(4):1227–1234

Ljungberg B, Albiges L, Bensalah K et al (2017) EAU guidelines on renal cell carcinoma: 2017 update. https://uroweb.org/guideline/renal-cell-carcinoma/. Accessed 15 Dec 2017

Long CJ, Canter DJ, Kutikov A et al (2012) Partial nephrectomy for renal masses ≥ 7 cm: technical, oncological and functional outcomes. BJU Int 109(10):1450–1456

Lee HJ, Liss MA, Derweesh IH (2014) Outcomes of partial nephrectomy for clinical T1b and T2 renal tumors. Curr Opin Urol 24(5):448–452

Van Poppel H, Da Pozzo L, Albrecht W et al (2007) A prospective randomized EORTC intergroup phase 3 study comparing the complications of elective nephron-sparing surgery and radical nephrectomy for low-stage renal cell carcinoma. Eur Urol 51(6):1606–1615

Ficarra V, Novara G, Secco S et al (2009) Preoperative aspects and dimensions used for an anatomical (PADUA) classification of renal tumours in patients who are candidates for Nephron-Sparing Surgery. Eur Urol 56(5):786–793

Simmons MN, Ching CB, Samplaski MK et al (2010) Kidney tumor location measurement using the C index method. J Urol 183(5):1708–1713

Kutikov A, Uzzo RG (2009) The R.E.N.A.L. nephrometry score: a comprehensive standardized system for quantitating renal tumor size, location and depth. J Urol 182(3):844–853

Roushiasa S, Vasdeva N, Ganai B et al (2013) Can the R.E.N.A.L nephrometry score preoperatively predict postoperative clinical outcomes in patients undergoing open and laparoscopic partial nephrectomy? Curr Urol 7(2):90–97

Hayn MH, Schwaab T, Underwood W et al (2011) RENAL nephrometry score predicts surgical outcomes of laparoscopic partial nephrectomy. BJU Int 108(6):876–881

Okhunov Z, Rais-Bahrami S, George AK et al (2011) The comparison of three renal tumor scoring systems: C-Index, P.A.D.U.A., and R.E.N.A.L. nephrometry scores. J Endourol 25(12):1921–1924

Mufarrij PW, Krane LS, Rajamahanty S et al (2011) Does nephrometry scoring of renal tumors predict outcomes in patients selected for robot-assisted partial nephrectomy? J Endourol 25(10):1649–1653

Matos AC, Dall’Oglio MF, Colombo JR Jr et al (2017) Predicting outcomes in partial nephrectomy: Is the renal score useful? Int Braz J Urol 43(3):422–431

Liu ZW, Olweny EO, Yin G et al (2013) Prediction of perioperative outcomes following minimally invasive partial nephrectomy: role of the R.E.N.A.L nephrometry score. World J Urol 31(5):1183–1189

Levey AS, Greene T, Kusek J et al (2000) A simplified equation to predict glomerular filtration rate from serum creatinine [abstract A0828]. J Am Soc Nephrol 11:155A

Tomaszewski JJ, Cung B, Smaldone MC et al (2014) Renal pelvic anatomy is associated with incidence, grade, and need for intervention for urine leak following partial nephrectomy. Eur Urol 66(5):949–955

Montag S, Waingankar N, Sadek MA et al (2011) Reproducibility and fidelity of the R.E.N.A.L. nephrometry score. J Endourol 25(12):1925–1928

Weight CJ, Atwell TD, Fazzio RT et al (2011) A multidisciplinary evaluation of inter-reviewer agreement of the nephrometry score and the prediction of long-term outcomes. J Urol 186(4):1223–1228

Simhan J, Smaldone MC, Tsai KJ et al (2011) Objective measures of renal mass anatomic complexity predict rates of major complications following partial nephrectomy. Eur Urol 60(4):724–730

Deklaj T, Lifshitz DA, Shikanov SA et al (2010) Laparoscopic radical versus laparoscopic partial nephrectomy for clinical T1bN0M0 renal tumors: comparison of perioperative, pathological, and functional outcomes. J Endourol 24(10):1603–1607

Roos FC, Brenner W, Thomas C et al (2012) Functional analysis of elective nephron-sparing surgery vs radical nephrectomy for renal tumors larger than 4 cm. Urology 79(3):607–613

Brewer K, O’Malley RL, Hayn M et al (2012) Perioperative and renal function outcomes of minimally invasive partial nephrectomy for T1b and T2a kidney tumors. J Endourol 26(3):244–248

Long JA, Arnoux V, Fiard G et al (2013) External validation of the RENAL nephrometry score in renal tumours treated by partial nephrectomy. BJU Int 111(2):233–239

Galvin DJ, Savage CJ, Adamy A et al (2011) Intraoperative conversion from partial to radical nephrectomy at a single institution from 2003 to 2008. J Urol 185(4):1204–1209

Tomaszewski JJ, Smaldone MC, Cung B et al (2014) Internal validation of the renal pelvic score: a novel marker of renal pelvic anatomy that predicts urine leak after partial nephrectomy. Urology 84(2):351–357

Bruner B, Breau RH, Lohse CM et al (2011) Renal nephrometry score is associated with urine leak after partial nephrectomy. BJU Int 108(1):67–72