Modified No-hair Conjecture and the Limiting Process
Tóm tắt
It is argued that the Schwarzschild black hole solution follows as a unique limit of the Brans-Dicke Class I solutions, provided the correct iterated limit is taken. Such a uniqueness is essential for the validity of a recent version of the no-hair conjecture. A non-trivial modification to this version is proposed in order to exclude Brans-Dicke Class IV solutions which appear to represent scalar hair black holes in general.
Từ khóa
Tài liệu tham khảo
Ruffini, R., and Wheeler, J. A. (1971). Physics Today 24, 30.
Chase, J. E. (1970). Commun. Math. Phys. 19, 276; Bekenstein, J. D. (1972). Phys. Rev. Lett. 28, 452; Teitelboim, C. (1972). Lett. Nuovo Cimento 3, 326.
Bekenstein, J. D. (1972). Phys. Rev. D 5, 1239, 2403.
Hawking, S. W. (1972). Commun. Math. Phys. 25, 176; Hartle, J. (1971). Phys. Rev. D 3, 2938; Teitelboim, C. (1972). Lett. Nuovo Cimento 3, 397.
Zannias, T. (1995). J. Math. Phys. 36, 6970.
Bekenstein, J. D. (1974). Ann. Phys. (NY) 82, 535.
Bekenstein, J. D. (1975). Ann. Phys. (NY) 91, 72.
Bekenstein, J. D., Sanders, R. H. (1994). Astrophys. J. 429, 480.
Heusler, M. (1992). J. Math. Phys. 33, 3497.
Sudarsky, D. (1995). Class. Quantum Grav. 12, 579.
Xanthopoulos, B. C., and Dialynas, T. E. (1992). J. Math. Phys. 23, 1463.
Klimčik, C. (1993). J. Math. Phys. 34, 1914.
Agnese, A. G., and La Camera, M. (1985). Phys. Rev. D 31, 1280.
Bekenstein, J. D. (1995). Phys. Rev. D 51, R6608.
Saa, A. (1996). J. Math. Phys. 37, 2346.
Matsuda, T. (1972). Prog. Theor. Phys. 47, 738.
Nandi, K. K., Islam, A., and Evans, J. (1997). Phys. Rev. D 55, 2497.
Weinberg, S. (1972). Gravitation and Cosmology (Wiley, New York).
Lukačevic, L., and Catovic, Z. (1992). Gen. Rel. Grav. 24, 827.
Maeda, K., Tachizawa, T., Torii, T., and Maki, T. (1994). Phys. Rev. Lett. 72, 450.
Bizon, P. (1994). Acta Phys. Polon. B 25, 877.
Gibbons, G. W. (1991). In The Physical World (Lecture Notes in Physics, vol. 383, Springer-Verlag, Berlin).