Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Phương pháp Newton sửa đổi trong số học khoảng tròn
Journal of Optimization Theory and Applications - Tập 86 - Trang 223-244
Tóm tắt
Phương pháp Newton sửa đổi cho các nghiệm bội được tổ chức theo một phương pháp khoảng để đồng thời bao gồm các nghiệm riêng biệt của đa thức P cho trước trong số học khoảng tròn phức. Một điều kiện về các đĩa khởi đầu, đảm bảo sự hội tụ, được đưa ra và sự hội tụ được chứng minh là bậc hai. Do đó, một thuật toán song song đơn giản để tiếp cận tất cả các nghiệm riêng biệt của P được phát triển từ phương pháp Newton sửa đổi.
Từ khóa
#phương pháp Newton sửa đổi #nghiệm bội #số học khoảng tròn #hội tụ bậc hai #thuật toán song songTài liệu tham khảo
Petković, M. S.,Iterative Methods for Simultaneous Inclusion of Polynomial Zeros, Lecture Notes in Mathematics, Springer Verlag, Berlin, Germany, Vol. 1387, 1989.
Henrici, P.,Circular Arithmetic and the Determination of Polynomial Zeros, Lecture Notes in Mathematics, Springer Verlag, Berlin, Germany, Vol. 228, pp. 86–92, 1971.
Gargantini, I., andHenrici, P.,Circular Arithmetic and the Determination of Polynomial Zeros, Numerische Mathematik, Vol. 18, pp. 305–320, 1972.
Alefeld, G., andHerzberger, J.,Introduction to Interval Computations, Academic Press, New York, New York, 1983.
Dennis, J. E., andSchnabel, R. B.,Numerical Methods for Unconstrained Optimization and Nonlinear Equations, Prentice-Hall, Englewood Cliffs, New Jersey, 1983.
Petković, M. S., andStefanović, L. V.,On the Simultaneous Method of Second Order for Finding Polynomial Complex Zeros in Circular Arithmetic, Freiburger Intervall Berichte, Vol. 3, pp. 63–95, 1985.
Wang, X., andZheng, S.,The Quasi-Newton Method in Parallel Circular Iteration, Journal of Computation and Applied Mathematics, Vol. 4, pp. 305–309, 1984.
Petković, M. S.,On a Generalization of the Root Iterations for Polynomial Complex Zeros in Circular Interval Arithmetic, Computing, Vol. 27, pp. 37–55, 1981.
Gargantini, I.,Parallel Square-Root Iterations, Lecture Notes in Computer Science, Springer Verlag, Berlin, Germany, Vol. 29, pp. 196–204, 1975.
Gargantini, I.,Parallel Laguerre Iterations: Complex Case, Numerische Mathematik, Vol. 26, pp. 317–323, 1976.
Gargantini, I.,Further Applications of Circular Arithmetic: Schroeder-Like Algorithms with Error Bounds for Finding Zeros of Polynomials, SIAM Journal on Numerical Analysis, Vol. 15, pp. 497–510, 1978.
Henrici, P.,Applied and Computational Complex Analysis, Vol. 1, John Wiley and Sons, New York, New York, 1974.
Berezin, I. S., andZhidkov, N. P.,Computing Methods, Vol. 2, Pergamon Press, Oxford, England, 1965.
Braess, D., andHadeler, K. P.,Simultaneous Inclusion of the Zeros of a Polynomial, Numerische Mathematik, Vol. 21, pp. 161–165, 1973.
Mitrinović, D. S.,Analytic Inequalities, Springer Verlag, Berlin, Germany, 1970.
Van Der Sluis, A.,Upper Bounds for Roots of Polynomials, Numerische Mathematik, Vol. 17, pp. 250–262, 1970.
Farmer, M. R., andLoizou, G.,An Algorithm for the Total or Partial Factorization of a Polynomial, Proceedings of the Cambridge Philosophical Society, Vol. 82, pp. 427–437, 1977.
Farmer, M. R., andLoizou, G.,Locating Multiple Zeros Interactively, Computers and Mathematics with Applications, Vol. 11, pp. 595–603, 1985.
Gargantini, I.,Parallel Algorithms for the Determination of Polynomial Zeros, Proceedings of 3rd Manitoba Conference on Numerical Mathematics, Edited by R. Thomas and H. C. Williams, Winnipeg, Canada, pp. 195–211, 1973.
Wilf, H. S.,A Global Bisection Algorithm for Computing the Zeros of Polynomials in the Complex Plane, Journal of the Association for Computing Machinery, Vol. 25, pp. 415–420, 1978.
Krishnamurthy, E. V., andVenkateswaran, H.,A Parallel Wilf Algorithm for Complex Zeros of a Polynomial, BIT, Vol. 21, pp. 104–111, 1981.
Lehmer, D. H.,A Machine Method for Solving Polynomial Equations, Journal of the Association for Computing Machinery, Vol. 8, pp. 151–162, 1961.
Lagouanelle, J. L.,Sur une Méthode de Calcul de l'Ordre de Multiplicité des Zéros d'un Polynome, Comptes Rendues de l'Academie Science de Paris, Vol. A262, pp. 626–627, 1966.
Stewar, G. W.,On Lehmer's Method for Finding the Zeros of a Polynomial, Mathematics of Computation, Vol. 23, pp. 829–835, 1969.
Pasquini, L., andTrigiante, D.,A Globally Convergent Method for Simultaneously Finding Polynomial Roots, Mathematics of Computation, Vol. 44, pp. 135–149, 1985.
Neumaier, A.,An Existence Test for Root Clusters and Multiple Roots, Zeitschrift für Angewandte Mathematik und Mechanik, Vol. 68, pp. 256–257, 1988.
Van De Vel, H.,A Method for Computing a Root of a Single Nonlinear Equation, Including Its Multiplicity, Computing, Vol. 14, pp. 167–171, 1975.
Wilkinson, J. H.,Rounding Errors in Algebraic Processes, Prentice Hall, Englewood Cliffs, New Jersey, 1963.
Milovanović, G. V., andPetković, M. S.,On Computational Efficiency of the Iterative Methods for Simultaneous Approximation of Polynomial Zeros, ACM Transactions on Mathematical Software, Vol. 12, pp. 295–306, 1966.
