Modified Logarithmic Sobolev Inequalities and Transportation Cost Inequalities in ℝ n
Tóm tắt
Từ khóa
Tài liệu tham khảo
Bakry, D.: Functional inequalities for Markov semigroups. Probability measures on groups: recent directions and trends, pp. 91–147. Tata Inst. Fund. Res. Mumbai (2006)
Barthe, F., Roberto, C.: Modified logarithmic Sobolev inequalities on ℝ. Potential Anal. 29, 167–193 (2008)
Bobkov, S.G., Gentil, I., Ledoux, M.: Hypercontractivity of Hamilton–Jacobi equations. J. Math. Pures Appl. 80, 669–696 (2001)
Bobkov, S.G., Ledoux, M.: Form Brunn–Minkowski to Brascamp-Leib and to logarithmic Sobolev inequalities. Geom. Funct. Anal. 10(5), 1028–1052 (2000)
Bobkov, S.G., Zegarlinski: Entropy bounds and isoperimetry. Mem. Amer. Math. Soc. 829, 69 (2005)
Cordero-Erausquin, D., McCann, R., Schmuckenschläger, M.: A Riemannian interpolation inequality à la Borell, Brascamp and Lieb. Invent. Math. 146, 219–257 (2001)
Cordero-Erausquin, D., McCann, R., Schmuckenschläger, M.: Prékopa–Leindler type inequalities on Riemannian manifolds, Jacobi fields, and optimal transport. Ann. Fac. Sci. Toulouse Math. 15(6), 613–635 (2006)
Feyel, D., Üstünel, A.: Measure transport on Wiener space and the Girsanov theorem. C. R. Acad. Sci. Paris 334, 1025–1028 (2002)
Gentil, I., Guillin, A., Miclo, L.: Modified logarithmic Sobolev inequalities and transportation inequalities. Probab. Theory Related Fields 133(3), 409–436 (2005)
Gentil, I., Guillin, A., Miclo, L.: Modified logarithmic Sobolev inequalities in null curvature. Rev. Mat. Iberoamericana 23(1), 237–260 (2007)
Gentil, I.: Inégalités de Sobolev logarithmiques et hypercontractivité en mécanique statistique et en EDP. Thèse de Doctorat de l’Université Paul Sabatier, Toulouse (2001)
Gentil, I.: From the Prékopa–Leindler inequality to modified logarithmic Sobolev inequality. Ann. Fac. Sci. Toulouse 17(2), 291-308 (2008)
Gozlan, N.: Characterization of Talagrand’s like transportation-cost inequalities on the real line. J. Funct. Anal. 250, 400–425 (2007)
Latała, R., Oleszkiewicz, K.: Between Sobolev and Poincaré. Lecture Notes in Math. 1745, 147–168 (2000)
Otto, F., Villani, C.: Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality. J. Funct. Anal. 170, 361–400 (2000)
Villani, C.: Topics in optimal transportation, vol. 58. Graduate Studies in Mathematics. American Mathematical Society, Providence, RI (2003)
Wang, F.Y.: A generalization of Poincaré and log-Sobolev inequalities. Potential Anal. 22, 1–15 (2005)