Modified Korteweg-de Vries hierarchy with hodograph transformation: Camassa–Holm and Harry–Dym hierarchies

Mathematics and Computers in Simulation - Tập 55 - Trang 483-491 - 2001
R.A. Kraenkel1, A.I. Zenchuk2
1Instituto de Fı́sica Teórica, Universidade Estadual Paulista, Rua Pamplona 145, 01405-900 Sao Paulo, Brazil
2Department of Mathematics, The University of Arizona, 617 N. Santa Rita, P.O. Box 210087, Tucson, AZ 85721, USA

Tài liệu tham khảo

V.E. Zakharov, What is integrability, Springer, Berlin, 1990, p. 33. Degasperis, 1998, Phys. Lett. A, 249, 307, 10.1016/S0375-9601(98)00574-X Zenchuk, 1998, JETP Lett., 68, 715, 10.1134/1.567940 Kraenkel, 1999, J. Phys. A: Math. Gen., 32, 4733, 10.1088/0305-4470/32/25/313 Zenchuk, 1997, Theor. Math. Phys., 110, 183, 10.1007/BF02630444 F. Calogero, A. Degasperis, Spectral Transform and Solitons I, North-Holland, Amsterdam, 1982. Camassa, 1993, Phys. Rev. Lett., 71, 1661, 10.1103/PhysRevLett.71.1661 Fokas, 1995, Physica D, 87, 145, 10.1016/0167-2789(95)00133-O Fuchssteiner, 1981, Physica D, 4, 47, 10.1016/0167-2789(81)90004-X Fuchssteiner, 1996, Physica D, 95, 229, 10.1016/0167-2789(96)00048-6 Dai, 1998, J. Phys. Soc. Jpn., 67, 3655, 10.1143/JPSJ.67.3655 Alber, 1994, Lett. Math. Phys., 32, 137, 10.1007/BF00739423 Li, 1997, Discrete Cont. Dyn. Syst., 3, 419, 10.3934/dcds.1997.3.419 Li, 1998, Discrete Cont. Dyn. Syst., 4, 159, 10.3934/dcds.1998.4.159 Wadati, 1980, Prog. Theor. Phys., 64, 1959, 10.1143/PTP.64.1959 M.J. Ablowitz, H. Segur, Solitons and Inverse Scattering Transform, SIAM, Philadelphia, 1981. V.E. Zakharov, S.V. Manakov, S.P. Novikov, L.P. Pitaevsky, Theory of Solitons. The Inverse Problem Method, Plenum Press, New York, 1984. Kraenkel, 1999, Two-dimensional integrable generalizations of the Camassa–Holm equation: ((F(2+1 (/F()-dimensional hierarch, Phys. Lett. A, 260, 218, 10.1016/S0375-9601(99)00536-8 Ferreira, 1999, Soliton–cuspon interaction for the Camassa–Holm equation, J. Phys. A: Math. Gen., 32, 8665, 10.1088/0305-4470/32/49/307