Modified Korteweg-de Vries hierarchy with hodograph transformation: Camassa–Holm and Harry–Dym hierarchies
Tài liệu tham khảo
V.E. Zakharov, What is integrability, Springer, Berlin, 1990, p. 33.
Degasperis, 1998, Phys. Lett. A, 249, 307, 10.1016/S0375-9601(98)00574-X
Zenchuk, 1998, JETP Lett., 68, 715, 10.1134/1.567940
Kraenkel, 1999, J. Phys. A: Math. Gen., 32, 4733, 10.1088/0305-4470/32/25/313
Zenchuk, 1997, Theor. Math. Phys., 110, 183, 10.1007/BF02630444
F. Calogero, A. Degasperis, Spectral Transform and Solitons I, North-Holland, Amsterdam, 1982.
Camassa, 1993, Phys. Rev. Lett., 71, 1661, 10.1103/PhysRevLett.71.1661
Fokas, 1995, Physica D, 87, 145, 10.1016/0167-2789(95)00133-O
Fuchssteiner, 1981, Physica D, 4, 47, 10.1016/0167-2789(81)90004-X
Fuchssteiner, 1996, Physica D, 95, 229, 10.1016/0167-2789(96)00048-6
Dai, 1998, J. Phys. Soc. Jpn., 67, 3655, 10.1143/JPSJ.67.3655
Alber, 1994, Lett. Math. Phys., 32, 137, 10.1007/BF00739423
Li, 1997, Discrete Cont. Dyn. Syst., 3, 419, 10.3934/dcds.1997.3.419
Li, 1998, Discrete Cont. Dyn. Syst., 4, 159, 10.3934/dcds.1998.4.159
Wadati, 1980, Prog. Theor. Phys., 64, 1959, 10.1143/PTP.64.1959
M.J. Ablowitz, H. Segur, Solitons and Inverse Scattering Transform, SIAM, Philadelphia, 1981.
V.E. Zakharov, S.V. Manakov, S.P. Novikov, L.P. Pitaevsky, Theory of Solitons. The Inverse Problem Method, Plenum Press, New York, 1984.
Kraenkel, 1999, Two-dimensional integrable generalizations of the Camassa–Holm equation: ((F(2+1 (/F()-dimensional hierarch, Phys. Lett. A, 260, 218, 10.1016/S0375-9601(99)00536-8
Ferreira, 1999, Soliton–cuspon interaction for the Camassa–Holm equation, J. Phys. A: Math. Gen., 32, 8665, 10.1088/0305-4470/32/49/307