Modified Double Sub-equation Method for Finding Complexiton Solutions to the ( $$1+1$$ 1 + 1 ) Dimensional Nonlinear Evolution Equations

Md. Belal Hossen1, Harun-Or Roshid2, M. Zulfikar Ali3
1Department of Computer Science and Engineering, Uttara University, Dhaka, Bangladesh
2Department of Mathematics, Pabna University of Science and Technology, Pabna, Bangladesh
3Department of Mathematics, Rajshahi University, Rajshahi, Bangladesh

Tóm tắt

Từ khóa


Tài liệu tham khảo

Ablowitz, M.J., Clarkson, P.A.: Soliton, Nonlinear Evolution Equations and Inverse Scatting. Cambridge University Press, New York (1991)

Matveev, V.B., Salle, M.A.: Darboux Transformation and Solitons. Springer, Berlin (1991)

Hirota, R.: The Direct Method in Soliton Theory. Cambridge University Press, Cambridge (2004)

Ma, W.X.: Travelling wave solutions to a seventh order generalized KdV equation. Phys. Lett. A 180, 221–224 (1993)

Ma, W.X., Zhou, D.T.: Solitary wave solutions to a generalized KdV equation. Acta Phys. Sin. 42, 1731–1734 (1993)

Wang, M.L., Zhou, Y.B., Li, Z.B.: Applications of a homogeneous balance method to exact solutions of nonlinear equations in mathematical physics. Phys. Lett. A 216, 67–75 (1996)

Zhu, Z.N.: Lax pair, Bäcklund transformation, solitary wave solution and finite conservation laws of the general KP equation and MKP equation with variable coefficients. Phys. Lett. A 180, 409–412 (1993)

Ma, W.X., Fuchssteiner, B.: Explicit and exact solutions to a Kolmogorov–Petrovskii–Piskunov equation. Int. J. Non-Linear Mech. 31, 329–338 (1996)

Tibor, B., Bèla, L., Csaba, M., Zsolt, U.: The hyperbolic tangent distribution family. Powder Technol. 97, 100–108 (1998)

Yan, C.: A simple transformation for nonlinear waves. Phys. Lett. A 224, 77–84 (1996)

Wang, M., Li, X., Zhang, J.: The $$({G}^{\prime }/G)$$ ( G ′ / G ) -expansion method and travelling wave solutions of nonlinear evolution equations in mathematical physics. Phys. Lett. A 372, 417–423 (2008)

Roshid, H.O., Alam, M.N., Hoque, M.F., Akbar, M.A.: A new extended $$({G}^{\prime }/G)$$ ( G ′ / G ) -expansion method to find exact traveling wave solutions of nonlinear evolution equations. Math. Stat. 1, 162–166 (2013)

Ma, W.X., Huang, T., Zhang, Y.: A multiple exp-function method for nonlinear differential equations and its application. Phys. Scr. 82, 065003 (2010)

Fu, Z.T., Liu, S.K., Liu, S.D., Zhao, Q.: New Jacobi elliptic function expansion and new periodic solutions of nonlinear wave equations. Phys. Lett. A 290, 72–76 (2001)

Chen, H.T., Zhang, H.Q.: Improved Jacobin elliptic function method and its applications. Chaos Solitons Fractals 15, 585–591 (2003)

Chen, H.T., Zhang, H.Q.: New multiple soliton-like solutions to the Generalized (2 + 1)-dimensional KP equation. Appl. Math. Comput. 157, 765–773 (2004)

Chen, H.T., Zhang, H.Q.: New double periodic and multiple soliton solutions of the generalized (2 + 1)-dimensional Boussinesq equation. Chaos Solitons Fractals 20, 765–769 (2004)

Fan, E.G.: Extanded tanh-function method and its applications to nonlinear equations. Phys. Lett. A 277, 212–218 (2000)

Zhang, S.: A generalized auxiliary equation method and its application to (2+1)-dimensional Korteweg-de Vries equations. Comput. Math. Appl. 54, 1028–1038 (2007)

Ma, W.X.: Complexiton solutions to the Korteweg-de Vries equation. Phys. Lett. A 301, 35–44 (2002)

Chen, Y., Wang, Q.: Multiple Riccati equations rational expansion method and complexiton solutions of the Whitham–Broer–Kaup equation. Phys. Lett. A 347, 215–227 (2005)

Chen, H.T., Yang, S.H., Ma, W.X.: Double sub-equation method for complexiton solutions of nonlinear partial differential equations. Appl. Math. Comput. 219(9), 4775–4781 (2013)

Lou, S.Y., Hu, H.C., Tang, X.Y.: Interactions among periodic waves and solitary waves of the (N+1)-dimensional sine-Gordon field. Phys. Rev. E 71, 036604 (2005)

Kutluay, S., Bahadir, A.R., Ozdes, A.: Numerical solution of one-dimensional Burgers equation: explicit and exact-explicit finite difference methods. J. Comput. Appl. Math. 103, 251–261 (1999)

Biazar, J., Aminikhah, H.: Exact and numerical solutions for non-linear Burger’s equationby VIM. Math. Comput. Model. 49, 1394–1400 (2009)

Hepson, O.E.: Numerical solutions of the Gardner equation by extended form of the cubic B-splines. arXiv:1702.02776v1 [math.NA] 9 Feb 2017

Wazwaz, A.M.: New solitons and kink solutions for the Gardner equation. Commun. Nonlinear Sci. Numer. Simul. 12(8), 1395–1404 (2007)

Ruderman, M.S., Talipova, T., Pelinovsky, E.: Dynamics of modulationally unstable ion-acoustic wavepackets in plasmas with negative ions. J. Plasma Phys. 74(05), 639–656 (2008)

Kamchatnov, A.M., Kuo, Y.H., Lin, T.C., Horng, T.L., Gou, S.C., Clift, R., El, G.A., Grimshaw, R.H.: Undular bore theory for the Gardner equation. Phys. Rev. E 86(3), 036605 (2012)

Kumar, S., Kumar, A., Baleanu, D.: Two analytical methods for time-fractional nonlinear coupled Boussinesq–Burger’s equations arise in propagation of shallow water waves. Nonlinear Dyn. 85(2), 699–715 (2016)

Çenesiz, Y., Baleanu, D., Kurt, A., Tasbozan, O.: New exact solutions of Burgers’ type equations with conformable derivative. Waves Random Complex Media 27(1), 103–116 (2017)

Johnston, S.J., Jafari, H., Moshokoa, S.P., Ariyan, V.M., Baleanu, D.: Laplace homotopy perturbation method for Burgers equation with space-and time-fractional order. Open Phys. 14(1), 247–252 (2016)