Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Quy trình đồng thuận của chuyên gia dựa trên phương pháp Delphi chỉnh sửa về các chỉ số cho một đăng ký bệnh quốc tế dành cho Bệnh lý bạch tạng Metachromatic: Sáng kiến Bạch tạng Metachromatic châu Âu (MLDi)
Tóm tắt
Bệnh lý bạch tạng Metachromatic (MLD) là một rối loạn lysosome hiếm gặp. Bệnh nhân mắc phải tình trạng suy giảm thần kinh không ngừng dẫn đến tử vong sớm. Gần đây, nhiều phương pháp điều trị mới, bao gồm liệu pháp gen và liệu pháp thay thế enzym, đã được phát triển. Những tiến bộ này gia tăng nhu cầu về hạ tầng nghiên cứu chất lượng cao để so sánh chính xác các phương pháp điều trị, thực hiện giám sát sau khi ra mắt thị trường và tiến hành đánh giá công nghệ y tế (HTA). Để tạo điều kiện cho điều này, một nhóm chuyên gia về MLD đã khởi xướng sáng kiến MLD (MLDi) và bắt đầu một cơ sở dữ liệu MLD do học viện lãnh đạo ở châu Âu. Một quy trình đồng thuận dựa trên chuyên gia, cụ thể là quy trình Delphi chỉnh sửa, đã được sử dụng để xác định các yếu tố dữ liệu cần thiết để trả lời các câu hỏi nghiên cứu học thuật, quy định và HTA. Ba bộ yếu tố dữ liệu khác nhau đã được xác định bởi một ban chuyên gia gồm 13 thành viên. Bộ dữ liệu tối thiểu (n = 13) chứa các thông tin nhân khẩu học và đặc điểm cơ bản của bệnh. Bộ dữ liệu cốt lõi (n = 55) bao gồm điểm số về tình trạng chức năng liên quan đến khả năng vận động, khả năng thao tác, khả năng nói và ăn uống, cũng như những đặc điểm về điều trị nguyên nhân và hỗ trợ. Các điểm số chất lượng cuộc sống liên quan đến sức khỏe cũng được đưa vào và được coi là cần thiết cho HTA. Bộ dữ liệu tùy chọn (n = 31) bao gồm các khía cạnh lâm sàng bổ sung, chẳng hạn như những phát hiện trong khám thần kinh, chức năng vận động chi tiết, sự hiện diện của bệnh thần kinh ngoại biên, sự tham gia của túi mật và việc tiểu tiện. Bằng cách sử dụng quy trình Delphi chỉnh sửa với các bác sĩ từ các trung tâm chuyên gia chính, sự đồng thuận đã đạt được về một bộ dữ liệu cốt lõi có thể được thu thập hồi cứu và tiền cứu. Với cách tiếp cận dựa trên đồng thuận này, một bước quan trọng hướng tới sự hài hòa đã được thực hiện. Bộ dữ liệu độc đáo này sẽ hỗ trợ kiến thức về bệnh và tạo điều kiện cho các yêu cầu quy định liên quan đến việc ra mắt các phương pháp điều trị mới.
Từ khóa
#Bệnh lý bạch tạng Metachromatic #rối loạn lysosome #liệu pháp gen #kỹ thuật đánh giá công nghệ y tế #quy trình Delphi #cơ sở dữ liệu MLDTài liệu tham khảo
von Figura KGV, Jaeken J. Metachromatic leukodystrophy. In: Scriver CR, Beaudet AL, Sly WS, Valle D, editors. The metabolic and molecular bases of inherited disease. 8th ed. New York: McGraw-Hill; 2000.
Cesani M, Lorioli L, Grossi S, Amico G, Fumagalli F, Spiga I, et al. Mutation update of ARSA and PSAP genes causing metachromatic leukodystrophy. Hum Mutat. 2016;37(1):16–27.
Beerepoot S, van Dooren SJM, Salomons GS, Boelens JJ, Jacobs EH, van der Knaap MS, et al. Metachromatic leukodystrophy genotypes in The Netherlands reveal novel pathogenic ARSA variants in non-Caucasian patients. Neurogenetics. 2020;21(4):289–99.
Martin HR, Poe MD, Provenzale JM, Kurtzberg J, Mendizabal A, Escolar ML. Neurodevelopmental outcomes of umbilical cord blood transplantation in metachromatic leukodystrophy. Biol Blood Marrow Transplant. 2013;19(4):616–24.
Kehrer C, Elgun S, Raabe C, Bohringer J, Beck-Wodl S, Bevot A, et al. Association of age at onset and first symptoms with disease progression in patients with metachromatic leukodystrophy. Neurology. 2021;96(2):e255–66.
Fumagalli F, Zambon AA, Rancoita PMV, Baldoli C, Canale S, Spiga I, et al. Metachromatic leukodystrophy: a single-center longitudinal study of 45 patients. J Inherit Metab Dis. 2021.
van Rappard DF, Boelens JJ, van Egmond ME, Kuball J, van Hasselt PM, Oostrom KJ, et al. Efficacy of hematopoietic cell transplantation in metachromatic leukodystrophy: the Dutch experience. Blood. 2016;127(24):3098–101.
van Rappard DF, Boelens JJ, Wolf NI. Metachromatic leukodystrophy: Disease spectrum and approaches for treatment. Best Pract Res Clin Endocrinol Metab. 2015;29(2):261–73.
Groeschel S, Kuhl JS, Bley AE, Kehrer C, Weschke B, Doring M, et al. Long-term outcome of allogeneic hematopoietic stem cell transplantation in patients with juvenile metachromatic leukodystrophy compared with nontransplanted control patients. JAMA Neurol. 2016;73(9):1133–40.
Boucher AA, Miller W, Shanley R, Ziegler R, Lund T, Raymond G, et al. Long-term outcomes after allogeneic hematopoietic stem cell transplantation for metachromatic leukodystrophy: the largest single-institution cohort report. Orphanet J Rare Dis. 2015;10:94.
Biffi A, Montini E, Lorioli L, Cesani M, Fumagalli F, Plati T, et al. Lentiviral hematopoietic stem cell gene therapy benefits metachromatic leukodystrophy. Science. 2013;341(6148):1233158.
Sessa M, Lorioli L, Fumagalli F, Acquati S, Redaelli D, Baldoli C, et al. Lentiviral haemopoietic stem-cell gene therapy in early-onset metachromatic leukodystrophy: an ad-hoc analysis of a non-randomised, open-label, phase 1/2 trial. Lancet. 2016;388(10043):476–87.
EMA. Libmeldy - Autologous CD34+ cells encoding ARSA gene www.ema.europe.eu: European Medicines Agency; 2020 [cited 2021 05-07-2021]. Available from: https://www.ema.europa.eu/en/medicines/human/EPAR/libmeldy.
Dali C, Sevin C, Krageloh-Mann I, Giugliani R, Sakai N, Wu J, et al. Safety of intrathecal delivery of recombinant human arylsulfatase A in children with metachromatic leukodystrophy: results from a phase 1/2 clinical trial. Mol Genet Metab. 2020;131(1–2):235–44.
EMA. CHMP assessment report (EPAR) Libmeldy. In: Use CfMPfH, editor.: European Medicines Agency; 2020.
Boulanger V, Schlemmer M, Rossov S, Seebald A, Gavin P. Establishing Patient Registries for Rare Diseases: Rationale and Challenges. Pharmaceut Med. 2020;34(3):185–90.
Jansen-van der Weide MC, Gaasterland CMW, Roes KCB, Pontes C, Vives R, Sancho A, et al. Rare disease registries: potential applications towards impact on development of new drug treatments. Orphanet J Rare Dis. 2018;13(1):154.
Mulberg AE, Bucci-Rechtweg C, Giuliano J, Jacoby D, Johnson FK, Liu Q, et al. Regulatory strategies for rare diseases under current global regulatory statutes: a discussion with stakeholders. Orphanet J Rare Dis. 2019;14(1):36.
Hollak CEM, Sirrs S, van den Berg S, van der Wel V, Langeveld M, Dekker H, et al. Registries for orphan drugs: generating evidence or marketing tools? Orphanet J Rare Dis. 2020;15(1):235.
Sirrs SM, Arthus MF, Bichet DG, Rockman-Greenberg C, LeMoine K, Morel CF, et al. Independent registries are cost-effective tools to provide mandatory postauthorization surveillance for orphan medicinal products. Value Health. 2021;24(2):268–73.
Hasson F, Keeney S, McKenna H. Research guidelines for the Delphi survey technique. J Adv Nurs. 2000;32(4):1008–15.
Diamond IR, Grant RC, Feldman BM, Pencharz PB, Ling SC, Moore AM, et al. Defining consensus: a systematic review recommends methodologic criteria for reporting of Delphi studies. J Clin Epidemiol. 2014;67(4):401–9.
EMA. Guideline on registry-based studies - Draft. In: Registries C-CTFo, editor.: European Medicines Agency; 2020.
EMA. Guideline on registry-based studies. In: (CHMP) CfHMP, editor. https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-registry-based-studies_en-0.pdf: European Medicines Agency; 2021.
EU-RD-Platform. Set of common data elements for rare diseases registration - European Platform on Rare Disease Registration - European Commission 2021.
Eichler F, Grodd W, Grant E, Sessa M, Biffi A, Bley A, et al. Metachromatic leukodystrophy: a scoring system for brain MR imaging observations. AJNR Am J Neuroradiol. 2009;30(10):1893–7.
Kehrer C, Blumenstock G, Raabe C, Krageloh-Mann I. Development and reliability of a classification system for gross motor function in children with metachromatic leucodystrophy. Dev Med Child Neurol. 2011;53(2):156–60.
Kehrer C, Groeschel S, Kustermann-Kuhn B, Burger F, Kohler W, Kohlschutter A, et al. Language and cognition in children with metachromatic leukodystrophy: onset and natural course in a nationwide cohort. Orphanet J Rare Dis. 2014;9:18.
Sellers D, Mandy A, Pennington L, Hankins M, Morris C. Development and reliability of a system to classify the eating and drinking ability of people with cerebral palsy. Dev Med Child Neurol. 2014;56(3):245–51.
Eliasson AC, Krumlinde-Sundholm L, Rosblad B, Beckung E, Arner M, Ohrvall AM, et al. The manual ability classification system (MACS) for children with cerebral palsy: scale development and evidence of validity and reliability. Dev Med Child Neurol. 2006;48(7):549–54.
Groeschel S, Kehrer C, Engel C, í Dali C, Bley A, Steinfeld R, et al. Metachromatic leukodystrophy: natural course of cerebral MRI changes in relation to clinical course. J Inherit Metab Dis. 2011;34(5):1095–102.
Tillema JM, Derks MG, Pouwels PJ, de Graaf P, van Rappard DF, Barkhof F, et al. Volumetric MRI data correlate to disease severity in metachromatic leukodystrophy. Ann Clin Transl Neurol. 2015;2(9):932–40.
van Rappard DF, Klauser A, Steenweg ME, Boelens JJ, Bugiani M, van der Knaap MS, et al. Quantitative MR spectroscopic imaging in metachromatic leukodystrophy: value for prognosis and treatment. J Neurol Neurosurg Psychiatry. 2018;89(1):105–11.
Kehrer C, Blumenstock G, Gieselmann V, Krageloh-Mann I, German L. The natural course of gross motor deterioration in metachromatic leukodystrophy. Dev Med Child Neurol. 2011;53(9):850–5.
Raina A, Nair SS, Nagesh C, Thomas B, Nair M, Sundaram S. Electroneurography and advanced neuroimaging profile in pediatric-onset metachromatic leukodystrophy. J Pediatr Neurosci. 2019;14(2):70–5.
Elgun S, Waibel J, Kehrer C, van Rappard D, Bohringer J, Beck-Wodl S, et al. Phenotypic variation between siblings with metachromatic Leukodystrophy. Orphanet J Rare Dis. 2019;14(1):136.
Krageloh-Mann I, Groeschel S, Kehrer C, Opherk K, Nagele T, Handgretinger R, et al. Juvenile metachromatic leukodystrophy 10 years post transplant compared with a non-transplanted cohort. Bone Marrow Transplant. 2013;48(3):369–75.
Strolin M, Krageloh-Mann I, Kehrer C, Wilke M, Groeschel S. Demyelination load as predictor for disease progression in juvenile metachromatic leukodystrophy. Ann Clin Transl Neurol. 2017;4(6):403–10.
van der Veldt N, van Rappard DF, van de Pol LA, van der Knaap MS, van Ouwerkerk WJR, Becher JG, et al. Intrathecal baclofen in metachromatic leukodystrophy. Dev Med Child Neurol. 2019;61(2):232–5.
Eichler FS, Cox TM, Crombez E, Dali CI, Kohlschutter A. Metachromatic leukodystrophy: an assessment of disease burden. J Child Neurol. 2016;31(13):1457–63.
Jabbehdari S, Rahimian E, Jafari N, Sanii S, Khayatzadehkakhki S, Nejad BH. The clinical features and diagnosis of metachromatic leukodystrophy: a case series of Iranian pediatric patients. Iran J Child Neurol. 2015;9(3):57–61.
Mahmood A, Berry J, Wenger DA, Escolar M, Sobeih M, Raymond G, et al. Metachromatic leukodystrophy: a case of triplets with the late infantile variant and a systematic review of the literature. J Child Neurol. 2010;25(5):572–80.
Molloy DW, Standish TI. A guide to the standardized mini-mental state examination. Int Psychogeriatr. 1997;9(Suppl 1):87–94 (discussion 143–50).
Russell DJ, Rosenbaum, Peter L, Wright, Marilyn, Avery, Lisa M. Gross Motor Function Measure (GMFM-66 & GMFM 88) User's Manual 2nd Edition Clinics in Developmental Medicine. 2nd edition ed. London: Mac Keith Press; 2013.
Dali CI, Barton NW, Farah MH, Moldovan M, Mansson JE, Nair N, et al. Sulfatide levels correlate with severity of neuropathy in metachromatic leukodystrophy. Ann Clin Transl Neurol. 2015;2(5):518–33.
i Dali C, Hanson LG, Barton NW, Fogh J, Nair N, Lund AM. Brain N-acetylaspartate levels correlate with motor function in metachromatic leukodystrophy. Neurology. 2010;75(21):1896–903.
Biffi A, Cesani M, Fumagalli F, Del Carro U, Baldoli C, Canale S, et al. Metachromatic leukodystrophy - mutation analysis provides further evidence of genotype-phenotype correlation. Clin Genet. 2008;74(4):349–57.
Schmitz-Hubsch T, du Montcel ST, Baliko L, Berciano J, Boesch S, Depondt C, et al. Scale for the assessment and rating of ataxia: development of a new clinical scale. Neurology. 2006;66(11):1717–20.
Herdman M, Gudex C, Lloyd A, Janssen M, Kind P, Parkin D, et al. Development and preliminary testing of the new five-level version of EQ-5D (EQ-5D-5L). Qual Life Res. 2011;20(10):1727–36.
Wille N, Badia X, Bonsel G, Burstrom K, Cavrini G, Devlin N, et al. Development of the EQ-5D-Y: a child-friendly version of the EQ-5D. Qual Life Res. 2010;19(6):875–86.
Kreimeier S, Greiner W. EQ-5D-Y as a health-related quality of life instrument for children and adolescents: the instrument’s characteristics, development, current use, and challenges of developing its value set. Value Health. 2019;22(1):31–7.
Feeny D, Furlong W, Torrance GW, Goldsmith CH, Zhu Z, DePauw S, et al. Multiattribute and single-attribute utility functions for the health utilities index mark 3 system. Med Care. 2002;40(2):113–28.
Varni JW, Burwinkle TM, Seid M. The PedsQL as a pediatric patient-reported outcome: reliability and validity of the PedsQL Measurement Model in 25,000 children. Expert Rev Pharmacoecon Outcomes Res. 2005;5(6):705–19.
Varni JW, Seid M, Rode CA. The PedsQL: measurement model for the pediatric quality of life inventory. Med Care. 1999;37(2):126–39.
Ammann-Schnell L, Groeschel S, Kehrer C, Frolich S, Krageloh-Mann I. The impact of severe rare chronic neurological disease in childhood on the quality of life of families-a study on MLD and PCH2. Orphanet J Rare Dis. 2021;16(1):211.
Hamilton EMC, van der Lei HDW, Vermeulen G, Gerver JAM, Lourenco CM, Naidu S, et al. Natural history of vanishing white matter. Ann Neurol. 2018;84(2):274–88.
Mirchi A, Pelletier F, Tran LT, Keller S, Braverman N, Tonduti D, et al. Health-related quality of life for patients with genetically determined leukoencephalopathy. Pediatr Neurol. 2018;84:21–6.
Wijnhoven TM, de Onis M, Onyango AW, Wang T, Bjoerneboe GE, Bhandari N, et al. Assessment of gross motor development in the WHO Multicentre Growth Reference Study. Food Nutr Bull. 2004;25(1 Suppl):S37-45.
Forrest CB, Bartek RJ, Rubinstein Y, Groft SC. The case for a global rare-diseases registry. Lancet. 2011;377(9771):1057–9.
McGettigan P, Alonso Olmo C, Plueschke K, Castillon M, Nogueras Zondag D, Bahri P, et al. Patient Registries: an underused resource for medicines evaluation: operational proposals for increasing the use of patient registries in regulatory assessments. Drug Saf. 2019;42(11):1343–51.
Bellgard M, Beroud C, Parkinson K, Harris T, Ayme S, Baynam G, et al. Dispelling myths about rare disease registry system development. Source Code Biol Med. 2013;8(1):21.
Vittozzi L, Gainotti S, Mollo E, Donati C, Taruscio D. A model for the European platform for rare disease registries. Public Health Genomics. 2013;16(6):299–304.
EURORDIS-NORD-CORD. Joint Declaration of 10 Key Principles for Rare Disease Patient Registries wwweurordisorg2012.
EMA. Patient registries: European Medicines Agency; 2021 [Available from: https://www.ema.europa.eu/en/human-regulatory/post-authorisation/patient-registries.
Santoro M, Coi A, Lipucci Di Paola M, Bianucci AM, Gainotti S, Mollo E, et al. Rare disease registries classification and characterization: a data mining approach. Public Health Genom. 2015;18(2):113–22.
EUnetHTA. Registry Evaluation and Quality Standards Tool (REQueST) and vision paper on the sustainable availability of the proposed REQueST Tool. In: Registries) EJAWPBP-LEGa, editor. https://www.eunethta.eu/request-tool-and-its-vision-paper/: EUnetHTA; 2019.
EUnetHTA. Deliverable D5.6 Recommendations and tools for post launch evidence generation (PLEG). In: registries EJAWSBP-legPa, editor. https://www.eunethta.eu/wp-content/uploads/2021/08/D5.6_PLEG_Final_Recommendations_report_Final_version_June2021.pdf: EUnetHTA; 2021.
Lochmuller H, Torrent IFJ, Le Cam Y, Jonker AH, Lau LP, Baynam G, et al. The international rare diseases research consortium: policies and guidelines to maximize impact. Eur J Hum Genet. 2017;25(12):1293–302.
Beerepoot S, Heijst H, Roos B, Wamelink MMC, Boelens JJ, Lindemans CA, et al. Neurofilament light chain and glial fibrillary acidic protein levels in metachromatic leukodystrophy. Brain. 2021.
Slade A, Isa F, Kyte D, Pankhurst T, Kerecuk L, Ferguson J, et al. Patient reported outcome measures in rare diseases: a narrative review. Orphanet J Rare Dis. 2018;13(1):61.
EUnetHTA. Guideline - Endpoints used for relative effectiveness assessment of pharmaceuticals health-related quality of life and utility measures. https://www.eunethta.eu/wp-content/uploads/2013/01/Health-related-quality-of-life.pdf2013.
Schwartz AE, Kramer JM, Longo AL. Patient-reported outcome measures for young people with developmental disabilities: incorporation of design features to reduce cognitive demands. Dev Med Child Neurol. 2018;60(2):173–84.
Kodra Y, Weinbach J, Posada-de-la-Paz M, Coi A, Lemonnier SL, van Enckevort D, et al. Recommendations for improving the quality of rare disease registries. Int J Environ Res Public Health. 2018;15(8):1644.