Modification of the Marching Cubes Algorithm to Obtain a 3D Representation of a Planar Image
Tóm tắt
Từ khóa
Tài liệu tham khảo
Kumar, T.S. and Vijai, A., 3D reconstruction of face from 2D CT scan images, Procedia Eng., 2012, vol. 30, pp. 970–977.
Cirne, M. and Pedrini, H., Marching cubes technique for volumetric visualization accelerated with graphics processing units, J. Braz. Comput. Soc., 2013, vol. 19, p. 09.
Newman, T. and Yi, H., A survey of the marching cubes algorithm, Comput. Graph., 2006, vol. 30, pp. 854–879.
Long, Z. and Nagamune, K., A marching cubes algorithm: application for three-dimensional surface reconstruction based on endoscope and optical fiber, Information (Japan), 2015, vol. 18, pp. 1425–1437.
Lorensen, W.E. and Cline, H.E., Marching cubes: a high resolution 3D surface construction algorithm, SIGGRAPH Comput. Graph., 1987, vol. 21, no. 4, pp. 163–169.
Durst, M.J., Letters: additional reference to marching cubes, Comput. Graph., 1988, vol. 22, no. 2, pp. 72–73.
Nielson, G. and Hamann, B., The asymptotic decider: resolving the ambiguity in marching cubes, Proc. 26th IEEE Conf. on Visualization, Tempe, AZ, Oct. 22–25, 1991, pp. 83–91.
Natarajan, B., On generating topologically consistent isosurfaces from uniform samples, Visual Comput., 1994, vol. 11, pp. 52–62.
Chernyaev, E.V., Marching cubes 33: construction of topologically correct isosurfaces, Tech. Rep., Inst. for High Energy Physics, 1995.
Custodio, L., Pesco, S., and Silva, C., An extended triangulation to the marching cubes 33 algorithm, J. Braz. Comput. Soc., 2019, vol. 25, p. 12.
Gong, F. and Zhao, X., Three-dimensional reconstruction of medical image based on improved marching cubes algorithm, Proc. Int. Conf. on Machine Vision and Human-Machine Interface, Kaifen, 2010, pp. 608–611.
Liu, S. and Peng, J., Optimization of reconstruction of 2D medical images based on computer 3D reconstruction technology, J. Digital Inf. Manag., 2015, vol. 13, pp. 142–146.
Olshanskii, M.A., Reusken, A., and Grande, J., A finite element method for elliptic equations on surfaces, SIAM J. Num. Anal., 2009, vol. 47, 3339–3358.
Chernyshenko, A.Y. and Olshanskii, M.A., An adaptive octree finite element method for PDEs posed on surfaces, Comput. Methods Appl. Mech. Eng., 2015, vol. 291, pp. 146–172.
Bonito, A., Nochetto, R.H., and Pauletti, M.S., Dynamics of biomembranes: effect of the bulk fluid, Math. Model. Nat. Phenom., 2011, vol. 6, no. 5, pp. 25–43.
Cacciari, M. and Salam, G.P., Dispelling the N 3 myth for the k t jet-finder, Phys. Lett. B, 2006, vol. 641, no. 1, pp. 57–61.
Ulrich, T., Rendering massive terrains using chunked level of detail control, in SIGGRAPH 2002 Super-Size It! Scaling up to Massive Virtual Worlds Course Notes, New York: ACM Press, 2002.
Nielson, G.M., Zhang, L., Lee, K., and Huang, A., Parameterizing marching cubes isosurfaces with natural neighbor coordinates, in Advances in Geometric Modeling and Processing, Chen, F. and Jüttler, B., Eds., Berlin, Heidelberg: Springer, 2008, pp. 315–328.
Van Gelder, A. and Wilhelms, J., Topological considerations in isosurface generation, ACM Trans. Graph., 1994, vol. 13, no. 4, pp. 337–375.
Farin, G.E., Curves and Surfaces for Computer-Aided Geometric Design: a Practical Code, 4th ed., Acad. Press, 1996.