Modification of phase evolution in alkali-activated blast furnace slag by the incorporation of fly ash

Cement and Concrete Composites - Tập 45 - Trang 125-135 - 2014
Idawati Ismail1,2, Susan A. Bernal1,3, John L. Provis1,3, Rackel San Nicolas1, Sinin Hamdan2, J.S.J. van Deventer1,4
1Department of Chemical and Biomolecular Engineering, University of Melbourne, Victoria 3010, Australia
2Faculty of Engineering, Universiti Malaysia Sarawak, Kota Samarahan, 94300, Sarawak, Malaysia
3Department of Materials Science and Engineering, University of Sheffield, Sir Robert Hadfield Building, Mappin St, Sheffield S1 3JD, United Kingdom
4Zeobond Pty Ltd, P.O. Box 23450, Docklands, Victoria 8012, Australia

Tóm tắt

Từ khóa


Tài liệu tham khảo

Juenger, 2011, Advances in alternative cementitious binders, Cem Concr Res, 41, 1232, 10.1016/j.cemconres.2010.11.012

van Deventer, 2012, Technical and commercial progress in the adoption of geopolymer cement, Min Eng, 29, 89, 10.1016/j.mineng.2011.09.009

van Deventer, 2010, Chemical research and climate change as drivers in the commercial adoption of alkali activated materials, Waste Biomass Valor, 1, 145, 10.1007/s12649-010-9015-9

Bakharev, 1999, Alkali activation of Australian slag cements, Cem Concr Res, 29, 113, 10.1016/S0008-8846(98)00170-7

van Jaarsveld, 1999, Effect of the alkali metal activator on the properties of fly ash-based geopolymers, Ind Eng Chem Res, 38, 3932, 10.1021/ie980804b

Roy, 1999, Alkali-activated cements: opportunities and challenges, Cem Concr Res, 29, 249, 10.1016/S0008-8846(98)00093-3

Palomo, 1999, Alkali-activated fly ashes: A cement for the future, Cem Concr Res, 29, 1323, 10.1016/S0008-8846(98)00243-9

Gruskovnjak, 2006, Hydration of alkali-activated slag: comparison with ordinary Portland cement, Adv Cem Res, 18, 119, 10.1680/adcr.2006.18.3.119

Sindhunata, 2008, Structural evolution of fly ash based geopolymers in alkaline environments, Ind Eng Chem Res, 47, 2991, 10.1021/ie0707671

Richardson, 1994, The characterization of hardened alkali-activated blast-furnace slag pastes and the nature of the calcium silicate hydrate (C-S-H) phase, Cem Concr Res, 24, 813, 10.1016/0008-8846(94)90002-7

Puertas, 2011, A model for the C–A–S–H gel formed in alkali-activated slag cements, J Eur Ceram Soc, 31, 2043, 10.1016/j.jeurceramsoc.2011.04.036

Brough, 2002, Sodium silicate-based, alkali-activated slag mortars: Part I. Strength, hydration and microstructure, Cem Concr Res, 32, 865, 10.1016/S0008-8846(02)00717-2

Roy, 2000, Chloride diffusion in ordinary, blended, and alkali-activated cement pastes and its relation to other properties, Cem Concr Res, 30, 1879, 10.1016/S0008-8846(00)00406-3

Bakharev, 2002, Sulfate attack on alkali-activated slag concrete, Cem Concr Res, 32, 211, 10.1016/S0008-8846(01)00659-7

Ravikumar, 2010, Structure and strength of NaOH activated concretes containing fly ash or GGBFS as the sole binder, Cem Concr Compos, 32, 399, 10.1016/j.cemconcomp.2010.03.007

Bernal, 2012, Engineering and durability properties of concretes based on alkali-activated granulated blast furnace slag/metakaolin blends, Constr Build Mater, 33, 99, 10.1016/j.conbuildmat.2012.01.017

Fernández-Jiménez, 2005, Microstructure development of alkali-activated fly ash cement: a descriptive model, Cem Concr Res, 35, 1204, 10.1016/j.cemconres.2004.08.021

Oh, 2011, The evolution of strength and crystalline phases for alkali-activated ground blast furnace slag and fly ash-based geopolymers, Cem Concr Res, 40, 189, 10.1016/j.cemconres.2009.10.010

Lloyd R.R. The durability of inorganic polymer cements, PhD thesis. University of Melbourne; 2008.

Escalante García, 2006, Cementitious composites of pulverised fuel ash and blast furnace slag activated by sodium silicate: effect of Na2O concentration and modulus, Adv Appl Ceram, 105, 201, 10.1179/174367606X120151

Kumar, 2010, Influence of granulated blast furnace slag on the reaction, structure and properties of fly ash based geopolymer, J Mater Sci, 45, 607, 10.1007/s10853-009-3934-5

Puligilla, 2013, Role of slag in microstructural development and hardening of fly ash-slag geopolymer, Cem Concr Res, 43, 70, 10.1016/j.cemconres.2012.10.004

Provis, 2012, X-ray microtomography shows pore structure and tortuosity in alkali-activated binders, Cem Concr Res, 42, 855, 10.1016/j.cemconres.2012.03.004

Yang, 2012, Mechanical property and structure of alkali-activated fly ash and slag blends, J Sust Cem-Based Mater, 1, 167

Xu, 2008, Characterization of aged slag concretes, ACI Mater J, 105, 131

Wang, 1995, Hydration products of alkali activated slag cement, Cem Concr Res, 25, 561, 10.1016/0008-8846(95)00045-E

Puertas, 2003, Mineralogical and microstructural characterisation of alkali-activated fly ash/slag pastes, Cem Concr Compos, 25, 287, 10.1016/S0958-9465(02)00059-8

Ben Haha, 2011, Influence of slag chemistry on the hydration of alkali-activated blast-furnace slag - Part I: Effect of MgO, Cem Concr Res, 41, 955, 10.1016/j.cemconres.2011.05.002

Zhang, 2010, Mechanical performance and hydration mechanism of geopolymer composite reinforced by resin, Mater Sci Eng A, 527, 6574, 10.1016/j.msea.2010.06.069

Bernal, 2013, High-resolution X-ray diffraction and fluorescence microscopy characterization of alkali-activated slag-metakaolin binders, J Am Ceram Soc, 96, 1951, 10.1111/jace.12247

Guo, 2010, Compressive strength and microstructural characteristics of class C fly ash geopolymer, Cem Concr Compos, 32, 142, 10.1016/j.cemconcomp.2009.11.003

Bakharev, 2005, Geopolymeric materials prepared using Class F fly ash and elevated temperature curing, Cem Concr Res, 35, 1224, 10.1016/j.cemconres.2004.06.031

Rodríguez, 2013, Effect of nanosilica-based activators on the performance of an alkali-activated fly ash binder, Cem Concr Compos, 35, 1, 10.1016/j.cemconcomp.2012.08.025

Kohoutková, 2007, Preparation and characterization of analcime powders by X-ray and SEM analyses, Ceram-Silik, 51, 9

Fernández-Jiménez, 2008, Alkaline activation of metakaolin–fly ash mixtures: obtain of zeoceramics and zeocements, Micropor Mesopor Mater, 108, 41, 10.1016/j.micromeso.2007.03.024

Criado, 2007, An XRD study of the effect of the SiO2/Na2O ratio on the alkali activation of fly ash, Cem Concr Res, 37, 671, 10.1016/j.cemconres.2007.01.013

Bakharev, 2006, Thermal behaviour of geopolymers prepared using class F fly ash and elevated temperature curing, Cem Concr Res, 36, 1134, 10.1016/j.cemconres.2006.03.022

Lloyd, 2009, Accelerated ageing of geopolymers, 139

Reig, 2002, FTIR quantitative analysis of calcium carbonate (calcite) and silica (quartz) mixtures using the constant ratio method. Application to geological samples, Talanta, 58, 811, 10.1016/S0039-9140(02)00372-7

Gadsden, 1975

Beran, 2001, Dehydration and structural development of mullite precursors: an FTIR spectroscopic study, J Eur Ceram Soc, 21, 2479, 10.1016/S0955-2219(01)00265-5

Bernal, 2013, Gel nanostructure in alkali-activated binders based on slag and fly ash and effects of accelerated carbonation, Cem Concr Res, 10.1016/j.cemconres.2013.06.007

García Lodeiro, 2010, Effect on fresh C–S–H gels of the simultaneous addition of alkali and aluminium, Cem Concr Res., 40, 27, 10.1016/j.cemconres.2009.08.004

López, 1997, DTA-TGA and FTIR spectroscopies of sol-gel hydrotalcites: aluminum source effect on physicochemical properties, Mater Lett, 31, 311, 10.1016/S0167-577X(96)00296-0

Criado, 2007, Alkali activation of fly ash: Effect of the SiO2/Na2O ratio. Part I: FTIR study, Micropor Mesopor Mater, 106, 180, 10.1016/j.micromeso.2007.02.055

Bernal, 2011, Mechanical and thermal characterisation of geopolymers based on silicate-activated metakaolin/slag blends, J Mater Sci, 46, 5477, 10.1007/s10853-011-5490-z

Bernal, 2012, Activation of metakaolin/slag blends using alkaline solutions based on chemically modified silica fume and rice husk ash, Waste Biomass Valor, 3, 99, 10.1007/s12649-011-9093-3

Alarcon-Ruiz, 2005, The use of thermal analysis in assessing the effect of temperature on a cement paste, Cem Concr Res, 35, 609, 10.1016/j.cemconres.2004.06.015

Abdelrazig, 1992, Hydration studies of modified OPC pastes by differential scanning calorimetry and thermogravimetry, J Therm Anal, 38, 495, 10.1007/BF01915514

Nochaiya, 2010, Microstructural, physical, and thermal analyses of Portland cement–fly ash–calcium hydroxide blended pastes, J Therm Anal Calorim, 100, 101, 10.1007/s10973-009-0491-8

Ismail, 2013, Drying-induced changes in the structure of activated pastes, J Mater Sci., 48, 3566, 10.1007/s10853-013-7152-9

Majchrzak-Kucęba, 2004, Thermal analysis of fly ash-based zeolites, J Therm Anal Calorim, 77, 125, 10.1023/B:JTAN.0000033195.15101.4e

Lloyd, 2009, Microscopy and microanalysis of inorganic polymer cements. 1: Remnant fly ash particles, J Mater Sci, 44, 608, 10.1007/s10853-008-3077-0

Escalante-Garcia, 2003, Hydration products and reactivity of blast-furnace slag activated by various alkalis, J Am Ceram Soc, 86, 2148, 10.1111/j.1151-2916.2003.tb03623.x

García-Lodeiro, 2011, Compatibility studies between N–A–S–H and C–A–S–H gels. Study in the ternary diagram Na2O–CaO–Al2O3–SiO2–H2O, Cem Concr Res, 41, 923, 10.1016/j.cemconres.2011.05.006