Sửa đổi Diatomite bằng Oxit Sắt như một Chất Hấp Phụ Hiệu Quả cho Ion Selenit từ Nước: Nghiên Cứu Tổng hợp, Động lực học và Nhiệt động học

WATER CONSERVATION SCIENCE AND ENGINEERING - Tập 8 - Trang 1-12 - 2023
Farzane Talaee Shoar1, Hamid Delavari H1, Reza Poursalehi1
1Department of Materials Engineering, Tarbiat Modares University, Tehran, Iran

Tóm tắt

Trong nghiên cứu này, diatomite được sửa đổi bằng oxit sắt được sử dụng để loại bỏ ion selenit (Se(IV)) khỏi nước, và việc vận hành các yếu tố chính, bao gồm nồng độ anion ban đầu, thời gian tiếp xúc, liều lượng chất hấp phụ và pH của dung dịch, đang được điều tra. Kỹ thuật hiển vi điện tử quét và phân tích nhiễu xạ tia X đã chứng minh sự hình thành oxit sắt trong diatomite. Kết quả cho thấy tỉ lệ loại bỏ ion Se(IV) giảm khi giá trị pH tăng lên điều kiện kiềm. Khối lượng hấp phụ cao của Fe-diatomite được tính toán đạt 109,5 mg.g−1 dựa trên isotherm hấp phụ Langmuir, và sự kết hợp giữa hấp phụ vật lý và hóa học được xem là cơ chế của quá trình hấp phụ. Cuối cùng, nghiên cứu xác định rằng cả khuếch tán màng và khuếch tán trong hạt đều là các bước giới hạn tốc độ của quá trình hấp phụ ion Se(IV) lên Fe-diatomite.

Từ khóa

#Selenit #Diatomite #Oxit sắt #hấp phụ #Nhiệt động học

Tài liệu tham khảo

Godlewska P, Bogusz A, Dobrzyńska J, Dobrowolski R, Oleszczuk P (2020) Engineered biochar modified with iron as a new adsorbent for treatment of water contaminated by selenium. J Saudi Chem Soc 24(11):824–834 Ghazizadeh M, Abbasloo A, Bivar F (2021) Speciation and removal of selenium (IV, VI) from water and wastewaters based on dried activated sludge before determination by flame atomic absorption spectrometry. Anal Methods Environ Chem J 4(1):36–45 Nettem K, Almusallam AS (2013) Equilibrium, kinetic, and thermodynamic studies on the biosorption of selenium (IV) ions onto Ganoderma lucidum biomass. Sep Sci Technol 48(15):2293–2301 Zeeshan MH, Khan RU, Shafiq M, Sabir A (2020) Polyamide intercalated nanofiltration membrane modified with biofunctionalized core shell composite for efficient removal of arsenic and selenium from wastewater. J Water Process Eng 34(2019):101175 Hansen HK, Franco Peña S, Gutiérrez C, Núñez P (2020) Electrochemical peroxidation using iron nanoparticles and anodic iron dissolution to remove selenium from oil refinery wastewater. Water Environ J 34(2):284–290 Malhotra M, Pal M, Pal P (2020) A response surface optimized nanofiltration-based system for efficient removal of selenium from drinking water. J Water Process Eng 33(2019):101007 Phanthasri J, Grisdanurak N, Khamdahsag P (2020) Role of zeolite-supported nanoscale zero-valent iron in selenate removal Kieliszek M, Błażejak S, Piwowarek K, Brzezicka K (2018) Equilibrium modeling of selenium binding from aqueous solutions by Candida utilis ATCC 9950 yeasts. 3 Biotech 8(9):0 Okonji SO, Dominic JA, Pernitsky D, Achari G (2020) Removal and recovery of selenium species from wastewater: adsorption kinetics and co-precipitation mechanisms. J Water Process Eng 38(May):101666 Hong SH, Lyonga FN, Kang JK, Seo EJ, Lee CG, Jeong S, Hong SG, Park SJ (2020) Synthesis of Fe-impregnated biochar from food waste for selenium(VI) removal from aqueous solution through adsorption: process optimization and assessment. Chemosphere 252(3):126475 Hansen HK, Peña SF, Gutiérrez C, Lazo A, Lazo P, Ottosen LM (2019) Selenium removal from petroleum refinery wastewater using an electrocoagulation technique. J Hazard Mater 364:78–81 Frankenberger WT, Amrhein C, Fan TWM, Flaschi D, Glater J, Kartinen E, Kovac K, Lee E, Ohlendorf HM, Owens L, Terry N, Toto A (2004) Advanced treatment technologies in the remediation of seleniferous drainage waters and sediments. Irrig Drain Syst 18(1):19–41 Lee S, Kang T, Lee JY, Park J, Choi SH, Yu JY, Ok S, Park SH (2021) Thin-film composite nanofiltration membranes for non-polar solvents. Membranes (Basel) 11(3):1–16 Jung B, Safan A, Batchelor B, Abdel-Wahab A (2016) Spectroscopic study of Se(IV) removal from water by reductive precipitation using sulfide. Chemosphere 163:351–358 Nishimura T, Hashimoto H, Nakayama M (2007) Removal of selenium(VI) from aqueous solution with polyamine-type weakly basic ion exchange resin. Sep Sci Technol 42(14):3155–3167 Min X, Trujillo D, Huo J, Dong Q, Wang Y (2020) Amine-bridged periodic mesoporous organosilica nanomaterial for efficient removal of selenate. Chem Eng J 396:125278 Ma Z, Shan C, Liang J, Tong M (2018) Efficient adsorption of Selenium(IV) from water by hematite modified magnetic nanoparticles. Chemosphere 193:134–141 Ince M, Ince OK (2017) An overview of adsorption technique for heavy metal removal from water/wastewater: a critical review an overview of adsorption technique for heavy metal removal from water/wastewater: a critical review Su / Atıksuda Ağır Metal Giderimi için Adsorpti. no. December Peak D (2006) Adsorption mechanisms of selenium oxyanions at the aluminum oxide/water interface. J Colloid Interface Sci 303(2):337–345 Zhang Y, Wang J, Amrhein C, Frankenberger WT (2005) Removal of selenate from water by zerovalent iron. J Environ Qual 34(2):487–495 Wei X, Bhojappa S, Lin LS, Viadero RC (2011) Removal of selenium from aqueous solutions using magnetite nanoparticles as adsorbent. Tech Proc 2011 NSTI NanotechnolConf Expo, NSTI-Nanotech 2011 3:589–592 Zhang N, Lin LS, Gang D (2008) Adsorptive selenite removal from water using iron-coated GAC adsorbents. Water Res 42(14):3809–3816 Rovira M, Giménez J, Martínez M, Martínez-Lladó X, de Pablo J, Martí V, Duro L (2008) Sorption of selenium(IV) and selenium(VI) onto natural iron oxides: goethite and hematite. J Hazard Mater 150(2):279–284 Sharma S, Desai AV, Joarder B, Ghosh SK (2020) A water-stable ionic MOF for the selective capture of toxic oxoanions of SeVI and AsV and crystallographic insight into the ion-exchange mechanism. Angew Chemie Int Ed 59(20):7788–7792 Szlachta M, Chubar N (2013) The application of Fe-Mn hydrous oxides based adsorbent for removing selenium species from water. Chem Eng J 217:159–168 Das S, Jim Hendry M, Essilfie-Dughan J (2013) Adsorption of selenate onto ferrihydrite, goethite, and lepidocrocite under neutral pH conditions. Appl Geochemistry 28:185–193 Abukhadra MR, AlHammadi A, El-Sherbeeny AM, Salam MA, El-Meligy MA, Awwad EM, Luqman M (2021) Enhancing the removal of organic and inorganic selenium ions using an exfoliated kaolinite/cellulose fibres nanocomposite. Carbohydr Polym 252(2020):117163 Iida Y, Yamaguchi T, Tanaka T (2014) Sorption behavior of hydroselenide (HSe-) onto iron-containing minerals. J Nucl Sci Technol 51(3):305–322 Kim SS, Min JH, Lee JK, Baik MH, Choi JW, Shin HS (2012) Effects of pH and anions on the sorption of selenium ions onto magnetite. J Environ Radioact 104(1):1–6 Jadhav AS, Ali Amrani M, Singh SK, Al-Fatesh AS, Bansiwal A, Srikanth VVSS, Labhasetwar NK (2020) γ-FeOOH and γ-FeOOH decorated multi-layer graphene: potential materials for selenium(VI) removal from water. J Water Process Eng 37(2019):101396 De Tommasi E, Gielis J, Rogato A (2017) Diatom frustule morphogenesis and function: a multidisciplinary survey. Mar Genomics 35(2017):1–18 Inchaurrondo N, Font J, Ramos CP, Haure P (2016) Natural diatomites: efficient green catalyst for Fenton-like oxidation of Orange II. Appl Catal B Environ 181:481–494 Zhao Y, Tian G, Duan X, Liang X, Meng J, Liang J (2019) Environmental applications of diatomite minerals in removing heavy metals from water. Ind Eng Chem Res 58(27):11638–11652 Jang M, Min SH, Kim TH, Park JK (2006) Removal of arsenite and arsenate using hydrous ferric oxide incorporated into naturally occurring porous diatomite. Environ Sci Technol 40(5):1636–1643 Wang Z, Lin Y, Wu D, Kong H (2016) Hydrous iron oxide modified diatomite as an active filtration medium for phosphate capture. Chemosphere 144:1290–1298 Knoerr R, Brendlé J, Lebeau B, Demais H (2013) Preparation of ferric oxide modified diatomite and its application in the remediation of As(III) species from solution. Microporous Mesoporous Mater 169:185–191 Ulloa-Ovares D, Rodríguez-Rodríguez CE, Masís-Mora M, Durán JE (2021) Simultaneous degradation of pharmaceuticals in fixed and fluidized bed reactors using iron-modified diatomite as heterogeneous Fenton catalyst. Process Saf Environ Prot 152:97–107 Sheikhmohammadi A, Safari M, Alinejad A, Esrafili A, Nourmoradi H, Asgari E (2019) The synthesis and application of the Fe3O4@SiO2 nanoparticles functionalized with 3-aminopropyltriethoxysilane as an efficient sorbent for the adsorption of ethylparaben from wastewater: synthesis, kinetic, thermodynamic and equilibrium studies. J Environ Chem Eng 7(5) Cook WG, Olive RP (2012) Pourbaix diagrams for the iron-water system extended to high-subcritical and low-supercritical conditions. Corros Sci 55:326–331 Saad AM, Abukhadra MR, Abdel-Kader Ahmed S, Elzanaty AM, Mady AH, Betiha MA, Shim JJ, Rabie AM (2020) Photocatalytic degradation of malachite green dye using chitosan supported ZnO and Ce–ZnO nano-flowers under visible light. J Environ Manage 258(2019):110043 FT Shoar, Delavari H, Poursalehi R (2022) Kinetic, equilibrium, and thermodynamic studies for adsorptive removal of nickel ions by thermally modified diatomite from aqueous solution. Emergent Mater vol. Accepted Mrozik W, Jungnickel C, Skup M, Urbaszek P, Stepnowski P (2008) Determination of the adsorption mechanism of imidazolium-type ionic liquids onto kaolinite: implications for their fate and transport in the soil environment. Environ Chem 5(4):299–306 Zhuang J, Yu GR (2002) Effects of surface coatings on electrochemical properties and contaminant sorption of clay minerals. Chemosphere 49(6):619–628 Davis JA, Leckie JO (1978) Surface ionization and complexation at the oxide/water interface II. Surface properties of amorphous iron oxyhydroxide and adsorption of metal ions. J Colloid Interface Sci 67(1):90–107 Liu D, Yu W, Deng L, Yuan W, Ma L, Yuan P, Du P, He H (2016) Possible mechanism of structural incorporation of Al into diatomite during the deposition process I. Via a condensation reaction of hydroxyl groups. J Colloid Interface Sci 461:64–68 Wang H, Wu T, Chen J, Zheng Q (2015) Sorption of Se ( IV ) on Fe- and Al-modified bentonite, pp 107–113