Modern methods for acquisition of macroseismic data and their possible uses for eastern Siberia
Tóm tắt
Từ khóa
Tài liệu tham khảo
Ambraseys, N.N., Value of historical records of earthquakes, Nature, 1971, vol. 232, no. 5310, pp. 375–379. doi:10.1038/232375a0.
Aptikaev, F.F., Problems Arising in the Development of A New Generation Seismic Intensity Scale, Vulkanol. Seismol., 1999, nos. 4–5, pp. 23–28.
Aptikaev, F.F., Instrumental’naya shkala seismicheskoi intensivnosti (An Instrumental Scale of Seismic Intensity), Moscow: Nauka i Obrazovanie, 2012.
Aptikaev, F.F., Mokrushina, N.G., and O.O. Erteleva, The Mercalli family of seismic intensity scales, J. Volcanol. Seismol., 2008, no. 3, pp. 210–213.
Atkinson, G.M. and Wald, D.J., “Did You Feel It?” Intensity Data: A Surprisingly Good Measure of Earthquake Ground Motion, Seismological Research Letters, 2007, vol. 78, no. 3, pp. 362–368. doi:10.1785/gssrl.78.3.362.
Bossu, R., Gilles, S., Mazet-Roux, G., et al., Flash sourcing, or rapid detection and characterization of earthquake effects through website traffic analysis, Annals of Geophysics, 2011, vol. 54, no. 6, pp. 716–727. doi:10.4401/ag-5265.
Bossu, R., Mazet-Roux, G., Douet, V., et al., Internet users as seismic sensors for improved earthquake response, EOS, Transactions American Geophysical Union, 2008, vol. 89, no. 25, pp. 225–226. doi: 10.1029/2008EO250001.
Cajka, M.G. and Halchuk, S., Collecting intensity data via the Internet: The Cap-Rouge, Quebec earthquake, Seismological Research Letters, 1998, vol. 69, no. 6, pp. 585–587. doi:10.1785/gssrl.69.6.585.
Cecić, I. and Musson, R., Macroseismic surveys in theory and practice, Natural Hazards, 2004, vol. 31, no. 1, pp. 39–61. doi:10.1023/B:NHAZ.0000020255.00986.37.
Coppola, J.M., Cowan, L.X., Downes, G.L., et al., Felt earthquake reporting via the Internet in New Zealand, Seismological Research Letters, 2010, vol. 81, no. 6, pp. 984–991. doi:10.1785/gssrl.81.6.984.
Dewey, J.W., Wald, D., Dengler, L., et al., Macroseismic intensity in the Internet age, Computational Seismology and Geodynamics, vol. 7, Chowdhury, D.K., Ed., Washington, DC: AGU, 2005, pp. 60–65. doi:10.1029/CS007p0060.
Doan S., Vo, B.-K.H., and Collier, N., An Analysis of Twitter messages in the 2011 Tohoku earthquake, Electronic Healthcare. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, 2012, vol. 91, pp. 58–66. doi:10.1007/978-3-642-29262-0-8.
Earle, P., Earthquake Twitter, Nature Geoscience, 2010, vol. 3, no. 4, pp. 221–222. doi:10.1038/ngeo832.
Earle, P., Guy, M., Buckmaster, R., et al., OMG earthquake! Can Twitter improve earthquake response? Seismological Research Letters, 2010, vol. 81, no. 2, pp. 246–251. doi:10.1785/gssrl.81.2.246.
Earle, P.S., Bowden, D.C., and Guy, M., Twitter earthquake detection: earthquake monitoring in a social world, Annals of Geophysics, 2011, vol. 54, no. 6, pp. 708–715. doi:10.4401/ag-5364.
Emanov, A.F., Emanov, A.A., Leskova, E.V., et al., The ML 6.7 Tyva earthquake of December 27, 2011 and its aftershocks, Vestnik ONZ RAN, 2012, vol. 4, NZ2002. doi:10.2205/2012NZ000112.
Gregersen, S., Wiejacz, P., Debski, W., et al., The exceptional earthquakes in Kaliningrad district, Russia on September 21, 2004, Physics of the Earth and Planetary Interiors, 2007, vol. 164, nos. 1–2, pp. 63–74. doi:10.1016/j.pepi.2007.06.005.
Guidoboni, E. and Ebel, J.E., Earthquakes and Tsunamis in the Past. A Guide to Techniques in Historical Seismology, Cambridge: Cambridge University Press, 2009.
Guy, M., Earle, P., Ostrum, C., et al., Integration and dissemination of citizen reported and seismically derived earthquake information via social network technologies, in Advances in Intelligent Data Analysis IX, 9th International Symposium, IDA 2010, Tucson, AZ, USA, May 19–21, 2010, Proceedings, Cohen, P.R., Adams, N.M., and Berthold, M.R., Eds., Lecture Notes in Computer Science, 2010, vol. 6065, pp. 42–53. doi:10.1007/978-3-642-13062-5-6.
Hong, C.-S., Wang, C.-C., Tai, S.-C., et al., Earthquake detection by new motion estimation algorithm in video processing, Optical Engineering, 2011, vol. 50, no. 1, 017202. doi:10.1117/1.3530068.
Hough, S.E., Initial assessment of the intensity distribution of the 2011 Mw 5.8 Mineral, Virginia, earthquake, Seismological Research Letters, 2012, vol. 83, no. 4, pp. 649–657. http://dx.doi.org/ 10.1785/0220110140 .
Ionescu, C. and Dràgoicea, M., MACROSEIS: a tool for real-time collecting and querying macroseismic data in Romania, Romanian Journal of Physics, 2010, vol. 55, nos. 7–8, pp. 852–861.
Khanchuk, A.I., Safonov, D.A., Radziminovich, Ya.B., et al., The largest recent earthquake in the Upper Amur region on October 14, 2011: First results of multidisciplinary study, Dokl. Earth Sci., 2012, vol. 445, no. 1, pp. 916–919. doi: 10.1134/S1028334X12070227.
Komplekt kart obshchego seismicheskogo raionirovaniya territorii Rossiiskoi Federatsii-OSR-97. Masshtab 1: 8000000 (A Set of General Seismic Zonation Maps for the Area of Russian Federation, OSR-97, Scale 1: 8000000), Explanatory note and a list of towns and other population centers situated in earthquake-prone areas, Strakhov, V.N. and Ulomov, V.I., Eds., Moscow: OIFZ, 1999.
Lesueur, C., Cara, M., Scotti, O., Schlupp, A., and Sira, C., Linking ground motion measurements and macroseismic observations in France: a case study based on accelerometric and macroseismic databases, Journal of Seismology, 2013, vol. 17, no. 2, pp. 313–333. doi:10.1007/s10950-012-9319-2.
Mel’nikova, V.I., Gileva, N.A., Aref’ev, S.S., et al., The 2008 Kultuk earthquake with Mw=6.3 in the south of Baikal: Spatial-temporal analysis of seismic activation, Izvestiya, Physics of the Solid Earth, 2012, vol. 48, no. 7–8, pp. 594–614. doi:10.1134/S1069351312060031.
Mikhailova, R.S., A method for acquisition and analysis of deficient macroseismic data: North Caucasus, 1992–2008, in Zemletryaseniya Severnoi Evrazii (Earthquakes in North Eurasia for 2005), Obninsk: GS RAN, 2011, pp. 432–448.
Mityushkina, S.V., Tokarev, S.V., Raevskaya, A.A., and Chebrova, A.Yu., Automatic processing of macroseismic data for Kamchatka earthquakes using a web questionnaire, in Problemy kompleksnogo geofizicheskogo monitoringa Dal’nego Vostoka Rossii (Problems in the Multidisciplinary Geophysical Monitoring of the Russian Far East), Petropavlovsk-Kamchatskii, October 9–15, 2011, Petropavlovsk-Kamchatskii: GS RAN, 2011, pp. 376–380.
Mucciarelli, M., Camassi, R., and Gallipoli, M.R., Collection of macroseismic data in a digital age: Lessons from the 1999 Kocaeli, Turkey earthquake, Seismological Research Letters, 2002, vol. 73, no. 3, pp. 325–331. doi:10.1785/gssrl.73.3.325.
Nikonov, A.A., Following the traces of the Kaliningrad earthquake, Priroda, 2005, no. 3, pp. 47–53.
Nikonov, A.A., Surface disturbances connected with the Kaliningrad earthquake of September 21, 2004, and their correlation with macroseismic scales, Seismic Instruments, 2011, vol. 47, no. 2, pp. 148–157. doi:10.3103/S074792391102006X.
Nikonov, A.A., Aptikaev, F.F., Aleshin, A.S., et al., The Kaliningrad earthquake of September 21, 2004 as a model one for the East European Platform, in Geofizika XXI veka, 2005 god: Chteniya im. V.V. Fedynskogo (The Geophysics of the 21st Century, the Year 2005: Lectures in Memory of V.V. Fedynskii), Moscow: Nauchnyi Mir, 2006, pp. 282–289.
Nikonov, A.A., Medvedeva, N.S., Shvarev, S.V., and Fleifel’, L.D., The chief features in the 2011–2012 evolution of the seismic process in Tyva Republic: The predictive aspect, Vestnik ONZ RAN, 2012, vol. 4, NZ5001. doi:10.2205/2012NZ000113.
Novyi katalog sil’nykh zemletryasenii na territorii SSSR s drevneishikh vremen do 1975 g. (A New Catalog of Large Earthquakes in the USSR Area from Earliest Times Until 1975), Moscow: Nauka, 1977. [Available as New Catalog of Strong Earthquakes in the USSR from Ancient Times through 1977, Report SE-31, N. V. Kondorskaya and N. V. Shebalin, Editors-in-Chief, Translated and Published by World Data Center A for Solid Earth Geophysics, EDIS, Boulder, Colorado, 1982].
Pettenati, F. and Sirovich, L., Rapid scenarios and observed intensities, Annals of Geophysics, 2012, vol. 55, no. 4, pp. 673–678. doi:10.4401/ag-6175.
Project of a new Russian seismic scale, Inzhenernye Izyskaniya, 2011a, no. 10, pp. 62–71.
Project of a new Russian seismic scale (part 2), Inzhenernye Izyskaniya, 2011b, no. 11, pp. 86–92.
Radziminovich, Y.B., Imaev, V.S., Radziminovich, N.A., et al., The August 27, 2008, Mw=6.3, Kultuk earthquake effects in the nearepicenter zone: Macroseismic survey results, Seismic Instruments, 2010, vol. 46, no. 2, pp. 107–120. doi:10.3103/S0747923910020027.
Rautian, T.G., Khalturin, V.I., Fujita, K., et al., Origins and methodology of the Russian energy K-class system and its relationship to magnitude scales, Seismological Research Letters, 2007, vol. 78, no. 6, pp. 579–590. doi:10.1785/gssrl.78.6.579.
Sbarra, P., Tosi, P., and De Rubeis, V., Web-based macroseismic survey in Italy: method validation and results, Natural Hazards, 2010, vol. 54, no. 2, pp. 563–581. doi:10.1007/s11069-009-9488-7.
Shebalin, N.V., Kolichestvennaya makroseismika (fragmenty nezavershennoi monografii) (Quantitative Macroseismics (Fragments of an Incomplete Monograph)), Vychislitel’naya Seismologiya (Computational Seismology), 2003, issue 34, pp. 57–200.
Shebalin, N.V. and Aptikaev, F.F., The Development of Scales of the MSK Type, in Vychislitel’naya Seismologiya (Computational Seismology), 2003, issue 34, pp. 210–253.
Sherman, S.I., Berzhinskii, Yu.A., Pavlenov, V.A., and Aptikaev, F.F., Regional’nye shkaly seismicheskoi intensivnosti. Opyt sozdaniya shkaly dlya Pribaikal’ya (Regional Scales of Seismic Intensity: Developing a scale for the Baikal region), Novosibirsk: SO RAN, Filial GEO, 2003.
Smekalin, O.P., Chipizubov, A.V., and Imaev, V.S., Paleoearthquakes in the Baikal region: Methods and results of timing, Geotectonics, 2010, vol. 44, no. 2, pp. 158–175. doi:10.1134/S0016852110020056.
Tertulliani, A., Arcoraci, L., Berardi, M., et al., The Emilia 2012 sequence: a macroseismic survey, Annals of Geophysics, 2012, vol. 55, no. 4, pp. 679–687. doi:10.4401/ag-6140.
Ulomov, V.I., Akatova, K.N., and Medvedeva, N.S., Estimation of seismic hazard in the Kaliningrad region, Izvestiya, Physics of the Solid Earth, 2008, vol. 44, no. 9, pp. 691–705. doi:10.1134/S1069351308090012.
Wald, D.J., Quitoriano, V., Dengler, L.A., and Dewey, J.W., Utilization of the Internet for rapid community intensity maps, Seismological Research Letters, 1999a, vol. 70, no. 6, pp. 680–697. doi:10.1785/gssrl.70.6.680.
Wald, D.J., Quitoriano, V., Heaton, T.H., and Kanamori, H., Relationships between peak ground acceleration, peak ground velocity, and modified Mercalli intensity in California, Earthquake Spectra, 1999b, vol. 15, no. 3, pp. 557–564. doi:10.1193/1.1586058.
Wald, D.J., Quitoriano, V., Worden, C.B., et al., USGS Did You Feel It? Internet-based macroseismic intensity maps, Annals of Geophysics, 2011, vol. 54, no. 6, pp. 688–707. doi:10.4401/ag-5354.
Xu, J.H., Nie, G.Z., and Xu, X., A digital social network for rapid collection of earthquake disaster information, Natural Hazards and Earth System Sciences, 2013, vol. 13, no. 2, pp. 385–394. doi:10.5194/nhess-13385-2013.
Yang, X. and Wu, Z., Civilian monitoring video records for earthquake intensity: A potentially unbiased online information source of macro-seismology, Natural Hazards, 2013, vol. 65, no. 3, pp. 1765–1781. doi:10.1007/s11069-012-0447-3.