Modern Methods for Producing Acetic Acid from Methane: New Trends (A Review)

Petroleum Chemistry - Tập 62 - Trang 40-61 - 2022
N. N. Ezhova1, N. V. Kolesnichenko1, A. L. Maximov1
1Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Moscow, Russia

Tóm tắt

Recent achievements in the development of new methods for producing acetic acid (AA) from methane using heterogeneous catalysts are summarized and systematized. Modern heterogeneous-catalytic processes of methane conversion to AA via syngas and alternative one- and two-step AA production procedures via “low-temperature” oxidative methane conversion (via oxidative coupling, oxyhalogenation, oxidation into methanol, or oxidative transformations of СН4 in the presence of carbon oxides) are considered. The major attention is paid to the one-step AA synthesis by methane oxydation with carbon dioxide (by carboxylation reaction). Specific features of heterogeneous catalysts recently developed for this reaction are discussed.

Tài liệu tham khảo

Amghizar, I., Vandewalle, L.A., van Geem, K.M., and Marin, G.B., Engineering, 2017, vol. 3, pp. 171–178. https://doi.org/10.1016/J.ENG.2017.02.006 Statistical Review of World Energy 2019 (published by British Petroleum). http://globalfinances.ru/mirovyie-zapasyi-gaza/ Aldoshin, S.M., Arutyunov, V.S., Savchenko, V.I., and Sedov, I.V., Neftegazokhim., 2015, no. 3, pp. 60–68. Meng, X., Cui, X., Rajan, N.P., Yu, L., Deng, D., and Bao, X., Chemistry, 2019, vol. 5, no. 9, pp. 2296–2325. https://doi.org/10.1016/j.chempr.2019.05.008 Raynes, S., Shah, M.A., and Taylor, R.A., Dalton Trans., 2019, vol. 48, pp. 10364–10384. https://doi.org/10.1039/c9dt00922a Park, M.B., Park, E.D., and Ahn, W.S., Front. Chem., 2019, vol. 7, pp. 514–521. https://doi.org/10.3389/fchem.2019.00514 Arutyunov, V.S., Strekova, L.N., Nikitin, A.V., Kryuchkov, M.V., Savchenko, V.I., Sedov, I.V., Eliseev, O.L., and Lapidus, A.L., Petrol. Chem., 2019, vol. 59, no. 4, pp. 370–379. https://doi.org/10.1134/S0965544119040029 Matieva, Z.M., Kolesnichenko, N.V., Snatenkova, Y.M., and Khadzhiev, S.N., Petrol. Chem., 2019, vol. 59, no. 7, pp. 745–750. https://doi.org/10.1134/S0965544119070107 Golubev, K.B. and Magomedova, M.V., Petrol. Chem., 2017, vol. 57, no. 10, pp. 885–890. https://doi.org/10.1134/S0965544117100073 Asalieva, E.Y., Kul’chakovskaya, E.V., Sineva, L.V., and Mordkovich, V.Z., Petrol. Chem., 2020, vol. 60, no. 1, pp. 69–74. DOI:10.1134/S0965544120010028 Kulchakovskaya, E.V., Asalieva, E.Y., Gryaznov, K.O., Sineva, L.V., and Mordkovich, V.Z., Petrol. Chem., 2015, vol. 55, no. 1, pp. 45–50. https://doi.org/10.1134/S0965544115010089 Kolesnichenko, N.V., Ezhova, N.N., and Snatenkova, Yu.M., Russ. Chem. Rev., 2020, vol. 89, no. 2, pp. 191–224. https://doi.org/10.1070/RCR4900 Ezhova, N.N., Kolesnichenko, N.V., and Batova, T.I., Petrol. Chem., 2020, vol. 60, no. 4, pp. 459–470. https://doi.org/10.1134/S0965544120040064 Golubev, K.B., Batova, T.I., Kolesnichenko, N.V., and Maximov, A.L., Catal. Commun., 2019, vol. 129, article no. 105744. https://doi.org/10.1016/j.catcom.2019.105744 Dedov, A.G., Loktev, A.S., Golikov, S.D., Spesivtsev, N.A., Moiseev, I.I., Nipan, G.D., and Dorokhov, S.N., Petrol. Chem., 2015, vol. 55, no. 2, pp. 163–168. https://doi.org/10.1134/S0965544115020061 Stepanov, A.A., Korobitsyna, L.L., Vosmerikov, A.V., and Zaikovskii, V.I., Petrol. Chem., 2019, vol. 59, no. 1, pp. 91–98. https://doi.org/10.1134/S0965544119010146 Julian, I., Roedern, M.B., Hueso, J.L., Irusta, S., Baden, A.K., Mallada, R., Davis, Z., and Santamaria, J., Appl. Catal. B: Environmental, 2020, vol. 263, article no. 118360. https://doi.org/10.1016/j.apcatb.2019.118360 Razdan, N.K., Kumar, A., Foley, B.L., and Bhan, A., J. Catal., 2020, vol. 381, pp. 261–270. https://doi.org/10.1016/j.jcat.2019.11.004 Zhang, T., Yang, X., and Ge, Q., Catal. Today, 2020, vol. 339, pp. 54–61. https://doi.org/10.1016/j.cattod.2019.03.020 Golubev, K.B., Kolesnichenko, N.V., Wei, W., Su X., and Zhang, K., Catal. Commun., 2021, vol. 149, article no. 106176. https://doi.org/10.1016/j.catcom.2020.106176 Golubev, K.B., Bedenko, S.P., Budnyak, A.D., Ilolov, A.M., Tret’yakov, V.F., Talyshinskii, R.M., Maksimov, A.L., and Khadzhiev, S.N., Russ. J. Appl. Chem., 2019, vol. 92, no. 7, pp. 918–923. https://doi.org/10.1134/S1070427219070061 Kulikova, M.V., Dement’eva, O.S., and Norko, S.I., Petrol. Chem., 2020, vol. 60, no. 1, pp. 75–80. https://doi.org/10.1134/S0965544120010090 Gorlov, E.A., Shumovskii, A.V., Yas’yan, Y.P., Niskovskaya, M.Y., Kotelev, M.S., Smirnova, E.M., and Ol’gin, A.A., Petrol. Chem., 2019, vol. 59, no. 11, pp. 1249–1255. https://doi.org/10.1134/S0965544119110057 Maksimov, A.L., Losev, D.V., Kardasheva, Y.S., and Karakhanov, E.A., Petrol. Chem., 2014, vol. 54, no. 4, pp. 283–287. https://doi.org/10.1134/S0965544114040070 Chepaikin, E.G., Menchikova, G.N., and Pomogailo, S.I., Russ. Chem. Bull., Int. Ed., 2019, vol. 68, no. 8, pp. 1465—1477. https://doi.org/10.1007/S11172-019-2581-5 Gunsalus, N.J., Koppaka, A., Park, S.H., Bischof, S.M., Hashiguchi, B.G., and Periana, R.A., Chem. Rev., 2017, vol. 117, pp. 8521−8573. https://doi.org/10.1021/acs.chemrev.6b00739 Kalck, Ph., Berre, C.L., and Serp, Ph., Coord. Chem. Rev., 2020, vol. 402, article no. 213078. https://doi.org/10.1016/j.ccr.2019.213078 Budiman, A.W., Nam, J.S., Park, J.H., Mukti, R.I., Chang, T.S., Bae, J.W., and Choi, M.J., Catal. Surv. Asia, 2016, vol. 20, pp. 173–193. https://doi.org/10.1007/s10563-016-9215-9 Llamas, M., Tomás-Pejó, E., and González-Fernández, C., New Biotechnol., 2020, vol. 56, pp. 123–129. https://doi.org/10.1016/j.nbt.2020.01.002 Karim, Kh., Mamedov, E., Al-Hazmi, M.H., Fakeeha, A.H., Soliman, M.A., Al-Zeghayer, Y.S., AlFatish, A.S., and Al-Arify, A.A., US Patent 6383977, 2002. Borchert, H. and Dingerdissen, U., US Patent 6399816, 2002. Yoneda, N., Kusano, S., Yasui, M., Pujado, P., and Wilcher, S., Appl. Catal. A: General, 2001, vol. 221, pp. 253–265. https://doi.org/10.1016/S0926-860X(01)00800-6 Ren, Z., Lyu, Y., Song, X., and Ding, Y., Appl. Catal. A: General, 2020, vol. 595, article no. 117488. https://doi.org/10.1016/j.apcata.2020.117488 Paulik, F.E., Hershman, A., Coeur, C., Knox, W.R., and Roth, J.F., Patent US 3769329, 1973. Smith, B.L., Torrence, G.P., Agullo, A., and Alder, J.S., Patent US 5001259, 1991. Williams, B.L., Patent US 6140535, 2000. Key, L.A. and Law, D.J., Patent US 6472558, 2002. Hennigan, S.A., Patent US 10550059, 2020. Bristow, T.C. and Williams, P.D., Patent US 10537847, 2020. Ni, Y., Shi, L., Liu, H., Zhang, W., Liu, Y., Zhu, W., and Liu, Z., Catal. Sci. Technol., 2017, no. 7, pp. 4818–4822. https://doi.org/10.1039/C7CY01621B Seeburg, D., Liu, D., Dragomirova, R., Atia, H., Pohl, M.M., Amani, H., Georgi, G., Kreft, S., and Wohlrab, S., Processes, 2018, vol. 6, no. 12, article no. 263. https://doi.org/10.3390/pr6120263 Khadzhiev, S.N., Kolesnichenko, N.V., and Ezhova, N.N., Petrol. Chem., 2016, vol. 56, no. 2, pp. 77–95. https://doi.org/10.1134/S0965544116020079 Luk, H.T., Mondelli, C., Ferre, D.C., Stewart, J.A., and Perez-Ramirez, J., Chem. Soc. Rev., 2017, vol. 46, pp. 1358–1426. https://doi.org/10.1039/C6CS00324A Khodakov, A.Y., Chu, W., and Fongarland, P., Chem. Rev., 2007, vol. 107, pp. 1692–1744. https://doi.org/10.1021/cr050972v Kasnerik, V.I., Dobryakova, I.V., Knyazeva, E.E., Ivanova, I.I., Konnov, S.V., and Ivanov, A.O., Petrol. Chem., 2016, vol. 56, no. 3, pp. 217–223. https://doi.org/10.1134/S0965544116030051 Smith, B.L., Torrence, G.P., Agullo, A., and Alder, J.S., European Patent 01618774, 1985. Garland, C.S., Giles, M.F., Poole, A.D., and Sunley, J.G., European Patent 0728726, 1996. Backer, M.J., Giles, M.F., Garland, C.S., Muskett, M.J., Rafeletos, G., Smith, S.J., Sunley, J.G., Watt, R.J., and Williams, B.L., European Patent 0752406, 1997. Baker, M.J., Giles, M.F., Garland, C.S., and Rafeletos, G.C., European Patent 0749948, 2000. Takeshi Minami, Kenji Shimokawa, and Kazuhiko Hamato, Patent US 5364963, 1994. Takeshi Minami, Kazuhiko Hamato, Kenji Shimokawa, and Yoshimi Shiroto, Patent US 5576458, 1996. Ren, Zh., Lyu, Y., Song, X., Liu, Y., Jiang, Zh., Lin, R., and Ding, Y., Adv. Mater., 2019, article no. 1904976. https://doi.org/10.1002/adma.201904976 Bristow, T.C., Korean Patent Appl. 10-2015-0096792, 2015. Cheung, P., Iglesia, E., Sunley, J.G., Law, D.J., and Bhan, A., Patent US 7465822, 2008. Armitage, G.G., Ditzel, E.J., Law, D.J., and Sunley, J.G., Patent US 8431732, 2013. Hazel, N.J., Patent US 10512902, 2019. Sunley, J.G., Patent US 10583426, 2020. Cao, K., Fan, D., Li, L., Fan, B., Wang, L., Zhu, D., Wang, Q., Tian, P., and Liu, Zh., ACS Catal., 2020, vol. 10, no. 5, pp. 3372–3380. https://doi.org/10.1021/acscatal.9b04890 Li, X., Chen, X., Yang, Zh., Zhu, X., Xu, Sh., Xie, S., Liu, Sh., Liu, X., and Xu, L., Micropor. Mesopor. Mater., 2018, vol. 257, pp. 79–84. https://doi.org/10.1016/j.micromeso.2017.07.058 Xu, B.Q. and Sachtler, W.M.H., J. Catal., 1998, vol. 180, no. 2, pp. 194–206. https://doi.org/10.1006/jcat.1998.2287 Zhou, W., Kang, J., Cheng, K., He, S., Shi, J., Zhou, Ch., Zhang, Q., Chen, J., Peng, L., Chen, M., and Wang, Y., Angew. Chem. Int. Ed., 2018, vol. 57, no. 37, pp. 12012–12016. https://doi.org/10.1002/anie.201807113 Sheldon, D., Johnson Matthey Technol. Rev., 2017, vol. 61, no. 3, pp. 172–182. https://doi.org/10.1595/205651317x695622 Bozzano, G. and Manenti, F., Prog. Energy Combust. Sci., 2016, vol. 56, pp. 71–105. https://doi.org/10.1016/j.pecs.2016.06.001 Zhuchkov, D.P., Nenasheva, M.V., Terenina, M.V., Kardasheva, Yu.S., Gorbunov, D.N., and Karakhanov, E.A., Petrol. Chem., 2021, vol. 61, no. 1, pp. 1–14. https://doi.org/10.1134/S0965544121010011 Pavlechko, P.D., Asaro, M., and Naqvi, S., Process Economics Program. Review 2014-10. Acetic Acid from Syngas via the BP-SaaBre Process, 2014. https://ihsmarkit.com/pdf/RW2014-10-toc_214358110917062932.pdf Zhan, E., Xiong, Z., and Shen, W., J. Energy Chem., 2019, vol. 36, pp. 51–63. https://doi.org/10.1016/j.jechem.2019.04.015 Gao, X., Xu, B., Yang, G., Feng, X., Yoneyama, Y., Taka, U., and Tsubaki, N., Catal. Sci. Technol., 2018, no. 8, pp. 2087–2097. https://doi.org/10.1039/C8CY00010G Knifton, J.F., J. Catal., 1985, vol. 96, no. 2, pp. 439–453. https://doi.org/10.1016/0021-9517(85)90313-6 Ren, Zh., Lyu, Y., Feng, S., Song, X., and Ding, Y., Chin. J. Catal., 2018, vol. 39, no. 6, pp. 1060–1069. https://doi.org/10.1016/S1872-2067(18)63019-0 Saikia, P.K., Sarmah, P.P., Borah, B.J., Saikia, L., and Dutta, D.K., J. Mol. Catal. A: Chem., 2016, vol. 412, pp. 27–33. https://doi.org/10.1016/j.molcata.2015.11.015 Ren, Zh., Lyu, Y., Feng, S., Song, X., and Ding, Y., Mol. Catal., 2017, vol. 442, pp. 83–88. https://doi.org/10.1016/j.mcat.2017.09.007 Ren, Z., Liu, Y., Lyu, Y., Song, X., Zheng, C., Feng, S., Jiang, Z., and Ding, Y., J. Catal., 2019, vol. 369, pp. 249–256. https://doi.org/10.1016/j.jcat.2018.11.015 Park, K., Lim, S., Baik, J.H., Kim, H., Jung, K.D., and Yoon, S., Catal. Sci. Technol., 2018, vol. 8, pp. 2894–2900. https://doi.org/10.1039/C8CY00294K Kwak, J.H., Dagle, R., Tustin, G.C., Zoeller, J.R., Allard, L.F., and Wang, Y., J. Phys. Chem. Lett., 2014, no. 5, pp. 566–572. https://doi.org/10.1021/jz402728e Hensley, A.J.R., Zhang, J., Vinçon, I., Hernandez, X.P., Tranca, D., Seifert, G., J. Catal., 2018, vol. 361, pp. 414–422. https://doi.org/10.1016/j.jcat.2018.02.022 Feng, S., Song, X., Ren, Zh., and Ding, Y., Ind. Eng. Chem. Res., 2019, vol. 58, no. 12, pp. 4755–4763. https://doi.org/10.1021/acs.iecr.8b05402 Qi, J. and Christopher, P., Ind. Eng. Chem. Res., 2019, vol. 58, pp. 12632–12641. https://doi.org/10.1021/acs.iecr.9b02289 Qi, J., Finzel, J., Robatjazi, H., Xu, M., Hoffman, A.S., Bare, S.R., Pan, X., and Christopher, Ph., J. Am. Chem. Soc., 2020, vol. 142, no. 33, pp. 14178–14189. https://doi.org/10.1021/jacs.0c05026 Wang, X., Li, R., Yu, Ch., Liu, Y., Liu, L., Xu, Ch., Zhou, H., and Lu, Ch., Ind. Eng. Chem. Res., 2019, vol. 58, no. 39, pp. 18065–18072. https://doi.org/10.1021/acs.iecr.9b02610 Li, Y., Yu, M., Cai, K., Wang, M., Lv, J., Howe, R.F., Huang, Sh., and Ma, X., Phys. Chem. Chem. Phys., 2020, vol. 22, no. 20, pp. 11374–11381. https://doi.org/10.1039/D0CP00850H Liu, Sh., Cheng, Z., Li, Y., Sun, J., Cai, K., Huang, Sh., Lv, J., Wang, Sh., and Ma, X., Ind. Eng. Chem. Res., 2020, vol. 59, no. 31, pp. 13861–13869. https://doi.org/10.1021/acs.iecr.0c01156 Wang, X.S., Li, R.J., Yu, C.-C., Xu, C.M., Liu, Y.X., Xu, Ch.M., and Lu, C.X., J. Fuel Chem. Technol., 2020, vol. 48, no. 8, pp. 960–969. https://doi.org/10.1016/S1872-5813(20)30067-0 He, P., Li, Y., Cai, K., Xiong, X., Lv, J., Wang, Y., Huang, S., and Ma, X., ACS Appl. Nano Mater., 2020, vol. 3, no. 7, pp. 6460–6468. https://doi.org/10.1021/acsanm.0c00929 Zhou, H., Zhu, W., Shi, L., Liu, H., Liu, Sh., Xu, Sh., Ni, Y., Liu, Y., Li, L., and Liu, Zh., Catal. Sci. Technol., 2015, vol. 5, no. 3, pp. 1961–1968. https://doi.org/10.1039/C4CY01580K Zhao, P., Qian, W., Ma, H., Zhang, H., and Ying, W., Catal. Lett., 2021. vol. 151, pp. 940–954. https://doi.org/10.1007/s10562-020-03359-w Li, L., Wang, Q., Liu, H., Sun, T., Fan, D., Yang, M., Tian, P., and Liu, Zh., ACS Appl. Mater. Interfaces, 2018, vol. 10, no. 38, pp. 32239–32246. https://doi.org/10.1021/acsami.8b11823 Li, Y., Huang, Sh., Cheng, Z., Cai, K., Li, L., Milan, E., Lv, J., Wang, Y., Sun, Q., and Ma, X., Appl. Catal. B: Environmental, 2019, vol. 256, article no. 117777. https://doi.org/10.1016/j.apcatb.2019.117777 Reule, A.A.C., Prasad, V., and Semagina, N., Micropor. Mesopor. Mater., 2018, vol. 263, pp. 220–230. https://doi.org/10.1016/j.micromeso.2017.12.026 Wang, Sh., Guo, W., Zhu, L., Wang, H., Qiu, K., and Cen, K., J. Phys. Chem. C, 2015, vol. 119, no. 1, pp. 524–533. https://doi.org/10.1021/jp511543x Cheng, Z., Huang, Sh., Li, Y., Cai, K., Yao, D., Lv, J., Wang, Sh., and Ma, X., Appl. Catal. A: General, 2019, vol. 576, pp. 1–10. https://doi.org/10.1016/j.apcata.2019.02.032 Reule, A.A.C. and Semagina, N., ACS Catal., 2016, vol. 6, no. 8, pp. 4972–4975. https://doi.org/10.1021/acscatal.6b01464 Sheng, H., Ma, H., Qian, W., Fei, N., Zhang, H., and Ying, W., Energy Fuels, 2019, vol. 33, no. 10, pp. 10159–10166. https://doi.org/10.1021/acs.energyfuels.9b02335 Li, Sh., Cai, K., Li, Y., Liu, Sh., Yu, M., Wang, Y., Ma, X., and Huang, Sh., ChemCatChem.., 2020, vol. 12, no. 12, pp. 3290–3297. https://doi.org/10.1002/cctc.202000533 Lu, Q., Qian, W., Ma, H., Zhang, H., and Ying, W., Catalysts, 2021, vol. 11, no. 2, article no. 197. https://doi.org/10.3390/catal11020197 Xue, H.F., Huang, X.M., Zhan, E.S., Ma, M., and Shen, W.J., Catal. Commun., 2013, vol. 37, pp. 75–79. https://doi.org/10.1016/j.catcom.2013.03.033 Zhao, N., Tian, Y., Zhang, L., Cheng, Q., Lyu, Sh., Ding, T., Hu, Zh., Ma, X., and Li, X., Chin. J. Catal., 2019, vol. 40, no. 6, pp. 895–904. https://doi.org/10.1016/S1872-2067(19)63335-8 Li, Y., Sun, Q., Huang, Sh., Cheng, Z., Cai, K., Lv, J., and Ma, X., Catal. Today, 2018, vol. 311, pp. 81–88. https://doi.org/10.1016/j.cattod.2017.08.050 Kang, J., He, S., Zhou, W., Shen, Z., Li, Y., Chen, M., Zhang, Q., and Wang, Y., Nat. Commun., 2020, vol. 11, article no. 827. https://doi.org/10.1038/s41467-020-14672-8 Cao, Zh., Hu, T., Guo, J., Xie, J., Zhang, N., Zheng, J., Che, L., and Chen, B.H., Fuel, 2019, vol. 254, article no. 115542. https://doi.org/10.1016/j.fuel.2019.05.125 Tong, Ch., Zhang, J., Chen, W., Liu, X., Ye, L., and Yuan, Y., Catal. Sci. Technol., 2019, vol. 9, no. 21, pp. 6136–6144. https://doi.org/10.1039/C9CY01321K Zhang, Y., Ding, Ch., Wang, J., Jia, Y., Xue, Y., Gao, Zh., Yu, B., Gao, B., Zhang, K., and Liu, P., Catal. Sci. Technol., 2019, vol. 9, pp. 1581–1594. https://doi.org/10.1039/C8CY02593B Fan, Y., Ma, D., and Bao, X., Catal. Lett., 2009, vol. 130, pp. 286–290. https://doi.org/10.1007/s10562-009-0017-9 Wang, K.X., Xu, H.F., Li, W.S., Au, C.T., and Zhou, X.P., Appl. Catal. A: General, 2006, vol. 304, no. 1, pp. 168–177. https://doi.org/10.1016/j.apcata.2006.02.035 Lin, R., Amrute, A.P., and Pérez-Ramírez, J., Chem. Rev., 2017, vol. 117, pp. 4182–4247. https://doi.org/10.1021/acs.chemrev.6b00551 Bao, J., Yang, G., Yoneyama, Y., and Tsubaki, N., ACS Catal., 2019, vol. 9, no. 4, pp. 3026–3053. https://doi.org/10.1021/acscatal.8b03924 Paunovic, V., Zichittella, G., Moser, M., Amrute, A.P., and Perez-Ramirez, J., Nat. Chem., 2016, no. 8, pp. 803–809. https://doi.org/10.1038/nchem.2522 McFarlan, A.J., Patent US 5659077, 1997. НаGöltl, F., Michel, C., Andrikopoulos, P.C., Love, A.M., Hafner, J., Hermans, I., and Sautet, P., ACS Catal., 2016, vol. 6, no. 12, pp. 8404–8409. https://doi.org/10.1021/acscatal.6b02640 Mahyuddin, M.H., Staykov, A., Shiota, Y., and Yoshizawa, K., ACS Catal., 2016, vol. 6, no. 12, pp. 8321–8331. https://doi.org/10.1021/acscatal.6b01721 Sushkevich, V.L. and van Bokhoven, J.A., Catal. Sci. Technol., 2018, vol. 8, pp. 4141–4150. https://doi.org/10.1039/C8CY01055B Bunting, R.J., Thompson, J., and Hu, P., Phys. Chem. Chem. Phys., 2020, vol. 22, pp. 11686–11694. https://doi.org/10.1039/D0CP01284J Narsimhan, K., Michaelis, V.K., Mathies, G., Gunther, W.R., Griffin, R.G., and Roman-Leshkov, Y., J. Am. Chem. Soc., 2015, vol. 137, no. 5, pp. 1825–1832. https://doi.org/10.1021/ja5106927 Moteki, T., Tominaga, N., and Ogura, M., ChemCatChem., 2020, vol. 12, no. 11, pp. 2957–2961. https://doi.org/10.1002/cctc.202000168 Golubev, K.B., Yashina, O.V., Batova, T.I., Kolesnichenko, N.V., and Ezhova, N.N., Petrol. Chem., 2021, vol. 61, no. 6, pp. 663–669. https://doi.org/10.1134/S0965544121040058 Tang, Y., Li, Y., Fung, V., Jiang, D., Huang, W., Zhang, Sh., Iwasawa, Y., Sakata, T., Nguyen, L., Zhang, X., Frenkel, A.I., and Tao, F., Nat. Commun., 2018, no. 9, article no. 1231. https://doi.org/10.1038/s41467-018-03235-7 Shan, J., Li, M., Allard, L.F., Lee, S., and FlytzaniStephanopoulos, M., Nature, 2017, vol. 551, no. 7682, pp. 605–608. https://doi.org/10.1038/nature24640 Golubev, K.B., Yashina, O.V., Ezhova, N.N., and Kolesnichenko, N.V., Mendeleev Commun., 2021, vol. 31, pp. 712–714. https://doi.org/10.1016/j.mencom.2021.09.040 Yuan, Q., Zhang, Q.H., and Wang, Y., J. Catal., 2005, vol. 233, no. 1, pp. 221–233. https://doi.org/10.1016/j.jcat.2005.04.025 Wang, Y., Yuan, Q., Zhang, Q.H., and Deng, W.P., J. Phys. Chem. C, 2007, vol. 111, no. 5, pp. 2044–2053. https://doi.org/10.1021/jp066651k Shavi, R., Ko, J., Cho, A., Han, J.W., and Seo, J.G., Appl. Catal. B: Environmental, 2018, vol. 229, pp. 237–248. https://doi.org/10.1016/j.apcatb.2018.01.058 Pan, J., Chem. Technol. Ind. J., 2016, vol. 11, no. 6, pp. 108–122. Rabie, A.M., Betiha, M.A., and Park, S.E., Appl. Catal. B: Environmental, 2017, vol. 215, pp. 50–59. https://doi.org/10.1016/j.apcatb.2017.05.053 Chen, W. and Proulx, G., Patent US 2014/0275619, 2014. Zurcher, F.R., Cizeron, J.M., Schammel, W.P., Tkachenko, A., Gamoras, J., Karshtedt, D., Nyce, G., Rumplecker, A., McCormick, J., Merzlyak, A., Alcid, M., Rosenberg, D., and Ras, E.J., Patent US 8962517, 2015. Sollier, B.M., Gómez, L.E., Boix, A.V., and Miró, E.E., Appl. Catal. A: General, 2018, vol. 550, pp. 113–121. https://doi.org/10.1016/j.apcata.2017.10.023 Aseem, A., Jeba, G.G., Conato, M.T., Rimer, J.D., and Harold, M.P., Chem. Eng. J., 2018, vol. 331, pp. 132–143. https://doi.org/10.1016/j.cej.2017.08.093 Obana, Y., Abe, K., Oguchi, W., Yamada, K., and Uchida, H., Patent US 6706919, 2004. Wang, L.X., Xu, S.L., Chu, W.L., and Yang, W.S., Chin. J. Catal., 2009, vol. 30, no. 12, p;p. 1281–1286. https://doi.org/10.1016/S1872-2067(08)60144-8 Sano, K., Uchida, H., and Wakabayashi, S., Catal. Surv. Asia, 1999, vol. 3, pp. 55–60. https://doi.org/10.1023/A:1019003230537 Sun, M., Zhang, J., Putaj, P., Caps, V., Lefebvre, F., Pelletier, J., and Basset, M., Chem. Rev., 2014, vol. 114, no. 2, pp. 981–1019. https://doi.org/10.1021/cr300302b EDHOX™ Technology. Introducing an Alternative, Low-Carbon Path to Ethylene and Acetic Acid. https://www.linde-engineering.ru/ru/process-plants/petrochemical-plants/edhox-technology/index.html? Arutyunov V., Direct Methane to Methanol. Foundations and Prospects of the Process, Elsevier, 2014. https://www.sciencedirect.com/book/9780444632531/direct-methane-to-methanol Gounder, R. and Iglesia, E., Chem. Commun., 2013, vol. 49, pp. 3491–3509. https://doi.org/10.1039/C3CC40731D Qi, G., Wang, Q., Xu, J., Trébosc, J., Lafon, O., Wang, Ch., Amoureux, J.P., and Deng, F., Angew. Chem. Int. Ed., 2016, vol. 128, no. 51, pp. 16058–16062. https://doi.org/10.1002/ange.201608322 Wang, X., Qi, G., Xu, J., Li, B., Wang, C., and Deng, F., Angew. Chem. Int. Ed., 2012, vol. 51, pp. 3850–3853. https://doi.org/10.1002/anie.201108634 Wu, J.F., Yu, S.M., Wang, W.D., Fan, Y.X., Bai, S., J. Am. Chem. Soc., 2013, vol. 135, no. 36, pp. 13567–13573. https://doi.org/10.1021/ja406978q Gabrienko, A.A., Arzumanov, S.S., Luzgin, M.V., Stepanov, A.G., and Parmon, V.N., J. Phys. Chem. C, 2015, vol. 119, no. 44, pp. 24910–24918. https://doi.org/10.1021/acs.jpcc.5b08759 Wen, F., Zhang, J., Chen, Zh., Zhou, Z., Liu, H., Zhu, W., and Liu, Zh., Catal. Sci. Technol., 2021, vol. 11, pp. 1358–1364. https://doi.org/10.1039/D0CY01983F Corma, A., Law, D., Boronat, M., and MartínezSánchez, C., J. Am. Chem. Soc., 2008, vol. 130, no. 48, pp. 16316−16323. https://doi.org/10.1021/ja805607m Ham, H., Jung, H.S., Kim, H.S., Kim, J., Cho, S.J., Lee, W.B., Park, M.J., and Bae, J.W., ACS Catal., 2020, vol. 10, no. 9, pp. 5135–5146. https://doi.org/10.1021/acscatal.9b05144 Jung, H.S., Xuan, N.T., and Bae, J.W., Micropor. Mesopor. Mater., 2021, vol. 310, article no. 110669. https://doi.org/10.1016/j.micromeso.2020.110669 Ham, H., Kim, J., Lim, J.H., Sung, W.Ch., Lee, D.H., and Bae, J.W., Catal. Today., 2018, vol. 303, pp. 93–99. https://doi.org/10.1016/j.cattod.2017.08.011 Li, X., Liu, X., Liu, Sh., Xie, S., Zhu, X., Chen, F., and Xu, L., RSC Adv., 2013, vol. 3, no. 37, article no. 16549. https://doi.org/10.1039/c3ra42197j Xiong, Zh., Zhan, E., Li, M., and Shen, W., Chem. Commun., 2020, vol. 56, pp. 3401–3404. https://doi.org/10.1039/D0CC00886A Wei, Q., Yang, G., Gao, X., Tan, L., Ai, P., Zhang, P., Lu, P., Yoneyama, Y., and Tsubaki, N., Chem. Eng. J., 2017, vol. 316, pp. 832–841. https://doi.org/10.1016/j.cej.2017.02.019 Feng, X., Yao, J., Li, H., Fang, Y., Yoneyama, Y., Yang, G., and Tsubaki, N., Chem. Commun., 2019, vol. 55, pp. 1048–1051. https://doi.org/10.1039/C8CC08411D Lusardi, M., Chen, T.T., Kale, M., Kang, J.H., Neurock, M., and Davis, M.E., ACS Catal., 2020, vol. 10, no. 1, pp. 842–851. https://doi.org/10.1021/acscatal.9b04307 Research and Innovation, Carbon Capture and Storage (CCS). https://www.exxonmobil.ru/ru-RU/Research-and-innovation/Carbon-capture-and-storage Qian Zhu, Clean Energy, 2019, vol. 3, no. 2, pp. 85–100. https://doi.org/10.1093/ce/zkz008 Men’shchikov, I., Shkolin, A., Khozina, E., and Fomkin, A., Nanomaterials, 2020, vol. 10, no. 7, article no. 1379. https://doi.org/10.3390/nano10071379 Tsivadze, A.Y., Aksyutin, O.E., Ishkov, A.G., Men’shchikov, I.E., Fomkin, A.A., Shkolin, A.V., Khozina, E.V., and Grachev, V.A., Russ. Chem. Rev., 2018, vol. 87, no. 10, pp. 950–983. https://doi.org/10.1070/RCR4807 Moreno-Pirajan, J.C., Bastidas-Barranco, M.J., and Giraldo, L., J. Therm. Anal. Calorim., 2018, vol. 131, no. 1, pp. 259–271. https://doi.org/10.1007/s10973-017-6132-8 Li, J., Wang, L., Cao, Y., Zhang, Ch., He, P., and Li, H., Chin. J. Chem. Eng., 2018, vol. 26, no. 11, pp. 2266–2279. https://doi.org/10.1016/j.cjche.2018.07.008 Hong, J.T., Li, M., Zhang, J.N., Sun, B.Q., and Mo, F.Y., ChemSusChem., 2019, vol. 12, no. 1, pp. 6–39. https://doi.org/10.1002/cssc.201802012 Labinger, J.A. and Bercaw, J.E., Nature, 2002, vol. 417, pp. 507–514. https://doi.org/10.1038/417507a Schwach, P., Pan, X., and Bao, X., Chem. Rev., 2017, vol. 117, no. 13, pp. 8497–8520. https://doi.org/10.1021/acs.chemrev.6b00715 Havran, V., Duduković, M.P, and Lo, C.S., Ind. Eng. Chem. Res., 2011, vol. 50, no. 12, pp. 7089–7100. https://doi.org/10.1021/IE2000192 Liu, Sh., Winter, L.R., and Chen, J.G., ACS Catal., 2020, vol. 10, pp. 2855–2871. https://doi.org/10.1021/acscatal.9b04811 Wang, L., Yi, Y., Wu, Ch., Guo, H., and Tu, X., Angew. Chem. Int. Ed., 2017, vol. 56, no. 44, pp. 13679–13683. https://doi.org/10.1002/anie.201707131 Dreyfuss, H., Patent GB 226248A, 1923. Fujiwara, Y., Kitamura, F., and Taniguchi, H., Patent JPH 10226665A, 1998. Freund, H.J., Wambach, J., Seiferth, O., and Dillmann, B., Patent WO-9605163-A1, 1996. Spivey, J.J., Patent WO-9959952-A1, 1999. Kurioka, M., Nakata, K., Jintoku, T., Taniguchi, Y., Takaki, K., and Fujiwara, Y., Chem. Lett., 1995, no. 3, pp. 613–615. https://doi.org/10.1246/cl.1995.244 Bell, A.T., Mukhopadhyay, S., Zerella, M., Sunley, J.G., Gaemers, S., and Muskett, M.J., Patent US 6960682B2, 2005. Sun, M., Abou-Hamad, E., Rossini, A.J., Zhang, J., Lesage, A., Zhu, H., Pelletier, J., Emsley, L., Caps, V., and Basset, J.M., J. Am. Chem. Soc., 2013, vol. 135, pp. 804−810. https://doi.org/10.1021/ja309966j Patil, U., Saih, Y., Abou-Hamad, E., Hamieh, A., Pelletier, J.D.A., and Basset, J.M., Chem. Commun., 2014, vol. 50, pp. 12348–12351. https://doi.org/10.1039/C4CC04950K Ding, Y.H., Huang, W., and Wang, Y.G., Fuel Process. Technol., 2007, vol. 88, no.4, pp. 319–324. https://doi.org/10.1016/j.fuproc.2004.09.003 Wilcox, E.M., Roberts, G.W., and Spivey, J.J., Catal. Today, 2003, vol. 88, pp. 83–90. https://doi.org/10.1016/j.cattod.2003.08.007 Kim, J., Ha, H., Doh, W.H., Ueda, K., Mase, K., Kondoh, H., Mun, B.S., and Kim, H.Y., Nat. Commun., 2020, no. 11, article no. 5649. https://doi.org/10.1038/s41467-020-19398-1 Kwon, Y., Kim, T.Y., Kwon, G., Yi, J., and Lee, H., J. Am. Chem. Soc., 2017, vol. 139, no. 48, pp. 17694−17699. https://doi.org/10.1021/jacs.7b11010 Liu, G., Ariyarathna, I.R., Ciborowski, S.M., Zhu, Zh., Miliordos, E., Miliordos, E., and Bowen, K.H., J. Am. Chem. Soc., 2020, vol. 142, no. 51, pp. 21556–21561. https://doi.org/10.1021/jacs.0c11112 Zhang, R.G., Huang, W., and Wang, B.J., Chin. J. Catal., 2008, vol. 29, no. 9, pp. 913–920. http://www.cjcatal.com/EN/Y2008/V29/I9/913 Huang, W., Xie, K.C., Wang, J.P., Gao, Z.H., Yin, L.H., and Zhu, Q.M., J. Catal., 2001, vol. 201, pp. 100–104. https://doi.org/10.1006/jcat.2001.3223 Liu, Y., Cui, N., Jia, P., and Huang, W., Catalysts, 2020, vol. 10, no. 1, article no. 131. https://doi.org/10.3390/catal10010131 Huang, W., Sun, W.Z., and Li, F., AICHE J., 2010, vol. 56, no. 5, pp. 1279–1284. https://doi.org/10.1002/aic.12073 Нuang, W., Zhang, C., Yin, L., and Xie, K., J. Nat. Gas Chem., 2004, vol. 13, no. 2, pp. 113–115. https://doi.org/10.1137/1.9780898718683.ch4 Zhang, P., Yang, X., Hou, X., Mi, J., Yuan, Zh., Huang, J., and Stampfl, C., Catal. Sci. Technol., 2019, vol. 9, no. 2, pp. 6297–6307. https://doi.org/10.1039/C9CY01749F Bhaskararao, B., Kim, D.Y., Madridejos, J.M.L., Park, C.M., and Kim, K.S., J. Mater. Chem. A, 2020, no. 8, pp. 14671–14679. https://doi.org/10.1039/D0TA04002A Zhang, R.G., Song, L.Z., Liu, H.Y., and Wang, B.J., Appl. Catal. A: General, 2012, vols. 443–444, pp. 50–58. https://doi.org/10.1016/j.apcata.2012.07.024 Wang, S., Guo, Sh., Luo, Y., Qin, Zh., Chen, Y., Dong, M., Li, J., Fan, W., and Wang, J., Catal. Sci. Technol., 2019, vol. 9, pp. 6613–6626. https://doi.org/10.1039/C9CY01803D Panjan, W., Sirijaraensre, J., Warakulwit, C., Pantu, P., and Limtrakul, J., J. Phys. Chem. C, 2012, vol. 12, no. 48, pp. 16588–16594. https://doi.org/10.1039/c2cp42066j Montejo-Valencia, B.D., Pagán-Torres, Y.J., Martínez-Iñesta, M.M., and Curet-Arana, M.C., ACS Catal., 2017, vol. 7, no. 10, pp. 6719–6728. https://doi.org/10.1021/acscatal.7b00844 Carey, J.J. and Nolan, M., Appl. Catal. B: Environmental, 2016, vol. 196, pp. 324–336. https://doi.org/10.1016/j.apcatb.2016.04.004 Zhao, Y., Cui, Ch., Han, J., Wang, H., Zhu, X., and Ge, Q., J. Am. Chem. Soc., 2016, vol. 138, no. 32, pp. 10191–10198. https://doi.org/10.1021/jacs.6b04446 Zhao, Y., Wang, H., Han, J., Zhu, X., Mei, D., and Ge, Q., ACS Catal., 2019, vol. 9, no. 4, pp. 3187–3197. https://doi.org/10.1021/acscatal.9b00291 Nie, X., Ren, X., Tu, Ch., Song, Ch., Guo, X., and Chen, J.G., Chem. Commun., 2020, vol. 56, no. 28, pp. 3983–3986. https://doi.org/10.1039/C9CC10055E Tu, Ch., Nie, X., and Chen, J.G., ACS Catal., 2021, vol. 11, no. 6, pp. 3384–3401. https://doi.org/10.1021/acscatal.0c05492 Ye, J., Liu, C.J., Mei, D., and Ge, Q., J. Catal., 2014, vol. 317, pp. 44–53. https://doi.org/10.1016/j.jcat.20 Martin, O., Martin, A.J., Mondelli, C., Mitchell, S., Segawa, T.F., Hauert, R., Drouilly, C., Curulla-Ferre, D., and Perez-Ramirez, J., Angew. Chem. Int. Ed., 2016, vol. 55, no. 21, pp. 6261−6265. https://doi.org/10.1002/anie.201600943