Moderation in Management Research: What, Why, When, and How

Journal of Business and Psychology - Tập 29 Số 1 - Trang 1-19 - 2014
Jeremy Dawson1
1Institute of Work Psychology, Management School, University of Sheffield, Sheffield, S10 1FL, UK

Tóm tắt

Từ khóa


Tài liệu tham khảo

Aguinis, H. (1995). Statistical power problems with moderated regression in management research. Journal of Management, 21, 1141–1158.

Aguinis, H. (2004). Regression analysis for categorical moderators. New York: Guilford Press.

Aguinis, H., Beaty, J. C., Boik, R. J., & Pierce, C. A. (2005). Effect size and power in assessing moderating effects of categorical variables using multiple regression: A 30-year review. Journal of Applied Psychology, 90, 94–107.

Aguinis, H., & Stone-Romero, E. F. (1997). Methodological artifacts in moderated multiple regression and their effects on statistical power. Journal of Applied Psychology, 82, 192–206.

Aiken, L. S., & West, S. G. (1991). Multiple regression: Testing and interpreting interactions. Newbury Park, London: Sage.

Bauer, D. J., & Curran, P. J. (2005). Probing interactions in fixed and multilevel regression: Inferential and graphical techniques. Multivariate Behavioral Research, 40, 373–400.

Cohen, J., Cohen, P., West, S. G., & Aiken, L. S. (2003). Applied multiple regression/correlation analysis for the behavioral sciences (3rd ed.). Mahwah, NJ: Erlbaum.

Cortina, J. M. (1993). Interaction, nonlinearity, and multicollinearity: Implications for multiple regression. Journal of Management, 19, 915–922.

Cortina, J. M., & Landis, R. S. (2011). The earth is not round (p = .00). Organizational Research Methods, 14, 332–349.

Dalal, D. K., & Zickar, M. J. (2012). Some common myths about centering predictor variables in moderated multiple regression and polynomial regression. Organizational Research Methods, 15, 339–362.

Dunlap, W. P., & Kemery, E. R. (1988). Effects of predictor intercorrelations and reliabilities on moderated multiple regression. Organizational Behavior and Human Decision Processes, 41, 248–258.

Edwards, J. R. (2001). Ten difference score myths. Organizational Research Methods, 4, 265–287.

Edwards, J. R., & Lambert, L. S. (2007). Methods for integrating moderation and mediation: A general analytical framework using moderated path analysis. Psychological Methods, 12, 1–22.

Edwards, J. R., & Parry, M. E. (1993). On the use of polynomial regression equations as an alternative to difference scores in organizational research. Academy of Management Journal, 36, 1577–1613.

Jaccard, J., & Wan, C. K. (1995). Measurement error in the analysis of interaction effects between continuous predictors using multiple regression: Multiple indicator and structural equation approaches. Psychological Bulletin, 117, 348–357.

Johnson, R. E., Rosen, C. C., & Chang, C. (2011). To aggregate or not to aggregate: Steps for developing and validating higher-order multidimensional constructs. Journal of Business and Psychology, 26, 241–248.

Klein, A., & Moosbrugger, H. (2000). Maximum likelihood estimation of latent interaction effects with the LMS method. Psychometrika, 65, 457–474.

Kromrey, J. D., & Foster-Johnson, L. (1998). Mean centering in moderated multiple regression: Much ado about nothing. Educational and Psychological Measurement, 58, 42–67.

Landis, R. S. (2013). Successfully combining meta-analysis and structural equation modeling: Recommendations and strategies. Journal of Business and Psychology. doi:https://doi.org/10.1007/s10869-013-9285-x.

Landis, R. S., & Dunlap, W. P. (2000). Moderated multiple regression tests are criterion specific. Organizational Research Methods, 3, 254–266.

Locke, E. A., Shaw, K. N., Saari, L. M., & Latham, G. P. (1981). Goal setting and task performance: 1969–1980. Psychological Bulletin, 90, 125–152.

MacKinnon, D. P., Coxe, S., & Baraldi, A. N. (2012). Guidelines for the investigation of mediating variables in business research. Journal of Business and Psychology, 27, 1–14.

McClelland, G. H., & Judd, C. M. (1993). Statistical difficulties of detecting interactions and moderator effects. Psychological Bulletin, 114, 376.

Mirisola, A., & Seta, L. (2013). pequod: Moderated regression package. R package version 0.0-3 [Computer software]. Retrieved March 20, 2013. Available from http://CRAN.R-project.org/package=pequod.

Muthén, L. K., & Muthén, B. O. (1998-2011). Mplus user’s guide (6th ed). Los Angeles, CA: Muthén & Muthén.

Overton, R. C. (2001). Moderated multiple regression for interactions involving categorical variables: A statistical control for heterogeneous variance across two groups. Psychological Methods, 6, 218–233.

Pinheiro, J. C., & Bates, D. M. (2000). Mixed-effects models in S and S-PLUS. Statistics and computing. New York: Springer.

Preacher, K. J., Curran, P. J., & Bauer, D. J. (2006). Computational tools for probing interaction effects in multiple linear regression, multilevel modeling, and latent curve analysis. Journal of Educational & Behavioral Statistics, 31, 437–448.

Preacher, K. J., Rucker, D. D., & Hayes, A. F. (2007). Addressing moderated mediation hypotheses: Theory, methods, and prescriptions. Multivariate Behavioral Research, 42, 185–227.

Rogosa, D. (1980). Comparing nonparallel regression lines. Psychological Bulletin, 88, 307–321.

Rutherford, A. (2001). Introducing ANOVA and ANCOVA: A GLM approach. London: Sage.

Shanock, L. R., Baran, B. E., Gentry, W. A., Pattison, S. C., & Heggestad, E. D. (2010). Polynomial regression with response surface analysis: A powerful approach for examining moderation and overcoming limitations of difference scores. Journal of Business and Psychology, 25, 543–554.

Shieh, G. (2009). Detecting interaction effects in moderated multiple regression with continuous variables: Power and sample size considerations. Organizational Research Methods, 12, 510–528.

Snijders, T., & Bosker, R. (2011). Multilevel analysis: An introduction to basic and advanced multilevel modeling (2nd ed.). Thousand Oaks, CA: Sage.

Stone-Romero, E. F., & Anderson, L. E. (1994). Relative power of moderated multiple regression and the comparison of subgroup correlation coefficients for detecting moderating effects. Journal of Applied Psychology, 79, 354–359.

Tonidandel, S., & LeBreton, J. M. (2011). Relative importance analysis: A useful supplement to regression analysis. Journal of Business and Psychology, 26, 1–9.

van Knippenberg, D., De Dreu, C. K. W., & Homan, A. C. (2004). Work group diversity and group performance: An integrative model and research agenda. Journal of Applied Psychology, 89, 1008–1022.

West, B., Welch, K. B., & Galecki, A. T. (2007). Linear mixed models: A practical guide using statistical software. Boca Raton, FL: Chapman & Hall.

Wilcox, R. R. (1998). How many discoveries have been lost by ignoring modern statistical methods? American Psychologist, 53, 300–314.