Modelling the risk of hospital admission of lab confirmed SARS-CoV-2-infected patients in primary care: a population-based study
Tóm tắt
The objectives of this study are to develop a predictive model of hospital admission for COVID-19 to help in the activation of emergency services, early referrals from primary care, and the improvement of clinical decision-making in emergency room services. The method is the retrospective cohort study of 49,750 patients with microbiological confirmation of SARS-CoV-2 infection. The sample was randomly divided into two subsamples, for the purposes of derivation and validation of the prediction rule (60% and 40%, respectively). Data collected for this study included sociodemographic data, baseline comorbidities, baseline treatments, and other background data. Multilevel analyses with generalized estimated equations were used to develop the predictive model. Male sex and the gradual effect of age were the main risk factors for hospital admission. Regarding baseline comorbidities, coagulopathies, cancer, cardiovascular diseases, diabetes with organ damage, and liver disease were among the five most notable. Flu vaccination was a risk factor for hospital admission. Drugs that increased risk were chronic systemic steroids, immunosuppressants, angiotensin-converting enzyme inhibitors, and NSAIDs. The AUC of the risk score was 0.821 and 0.828 in the derivation and validation samples, respectively. Based on the risk score, five risk groups were derived with hospital admission ranging from 2.94 to 51.87%. In conclusion, we propose a classification system for people with COVID-19 with a higher risk of hospitalization, and indirectly with it a greater severity of the disease, easy to be completed both in primary care, as well as in emergency services and in hospital emergency room to help in clinical decision-making. Registration: ClinicalTrials.gov Identifier: NCT04463706.
Tài liệu tham khảo
World Health Organization (WHO) (2020) WHO Director-General’s remarks at the media briefing on 2019-nCoV on 11 Feb 2020 [Internet]. Available from: https://www.who.int/director-general/speeches/detail/who-director-general-s-remarks-at-the-media-briefing-on-2019-ncov-on-11-february-2020
Velavan TP, Meyer CG (2020) The COVID-19 epidemic. Trop Med Int Health 25(3):278–280
España. Ministerio de la Presidencia. Real Decreto 463/2020, de 14 de marzo, por el que se declara el estado de alarma para la gestión de la situación de crisis sanitaria ocasionada por el COVID-19. Boletín Oficial del Estado [Internet]. 2020 [cited 2022 Feb 5];67(I):25390–400. Available from: https://www.boe.es/buscar/doc.php?id=BOE-A-2020-3692
Caramelo F, Ferreira N, Oliveiros B (2020) ESTimation of risk factors for COVID-19 mortality—preliminary results. MedRxiv. https://doi.org/10.1101/2020.02.24.20027268
Jehi L, Ji X, Milinovich A, Erzurum S, Merlino A, Gordon S et al (2020) Development and validation of a model for individualized prediction of hospitalization risk in 4,536 patients with COVID-19. PLoS ONE. https://doi.org/10.1371/journal.pone.0237419 (Orueta JF, Editor)
Fernández García L, Puentes Gutiérrez AB, García BM (2020) Relationship between obesity, diabetes and ICU admission in COVID-19 patients. Med Clín (English Edition) 155(7):314–315
World Health Organization (WHO) Coronavirus disease (COVID-19): Tobacco [Internet]. [Cited 26 Jan 2021]. Available from: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/question-and-answers-hub/q-a-detail/coronavirus-disease-covid-19-tobacco
Zhao Z, Chen A, Hou W, Graham JM, Li H, Richman PS et al (2020) Prediction model and risk scores of ICU admission and mortality in COVID-19. PLoS ONE. https://doi.org/10.1371/journal.pone.0236618
Goff PH, Hayashi T, Martínez-Gil L et al (2015) Synthetic toll-like receptor 4 (TLR4) andTLR7 ligands as influenza virus vaccine adjuvants induce rapid, sustained, and broadly protective responses. J Virol 89(6):3221–3235.https://doi.org/10.1128/JVI.03337-14
Chih-cheng L, Tzu-Ping S, Wen-Chien K, Hung-Jen T, Po-Ren H (2020) Severe acute respiratory syndrome coronavirus 2 ( SARS-CoV-2) and coronavirus disease-2019 (COVID-19): the epidemic and the challenges. Int J Antimicrob Agents 55(3):105924
Deng Y, Liu W, Liu K, Fang Y-Y, Shang J, Zhou L et al (2020) Clinical characteristics of fatal and recovered cases of coronavirus disease 2019 (COVID-19) in Wuhan, China. Chin Med J. https://doi.org/10.1097/CM9.0000000000000824
Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y et al (2020) Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 395(10223):497–506
Charlson ME, Sax FL, MacKenzie CR, Fields SD, Braham RL, Douglas RG (1986) Assessing illness severity: does clinical judgment work? J Chronic Dis 39(6):439–452
WHO|WHO Collaborating Centre for Drug Statistics and Methodology [Internet] (2016) WHO. World Health Organization; [Cited 10 Apr 2021]. Available from: http://www.who.int/medicines/regulation/medicines-safety/about/collab-centres-norwegian/en/
Quan H, Sundararajan V, Halfon P, Fong A, Burnand B, Luthi JC et al (2005) Coding algorithms for defining comorbidities in ICD-9-CM and ICD-10 administrative data. Med Care 43(11):1130–1139
España PP, Bilbao A, García-Gutiérrez S, Lafuente I, Anton-Ladislao A, Villanueva A et al (2021) Predictors of mortality of COVID-19 in the general population and nursing homes. Intern Emerg Med. https://doi.org/10.1007/s11739-020-02594-8
Hanley JA, McNeil BJ. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology. 1982 Apr;143(1):29–36.
Hosmer DW, Lemeshow S. Applied logistic regression. 1989. 1–37
Hastie T, Tibshirani R, Friedman J. The elements of statistical learning: data mining, inference, and prediction. The Business of Giving. Springer, New York; 2009
Steyerberg EW. Clinical prediction models. Springer, New York; 2010
Barrio I, Arostegui I, Rodríguez-Álvarez M-X, Quintana J-M (2017) A new approach to categorising continuous variables in prediction models: proposal and validation. Stat Methods Med Res 26(6):2586–2602
Docherty AB, Harrison EM, Green CA, Hardwick HE, Pius R, Norman L et al (2020) Features of 20 133 UK patients in hospital with covid-19 using the ISARIC WHO clinical characterisation protocol: prospective observational cohort study. BMJ. https://doi.org/10.1136/bmj.m1985
Yang X, Yu Y, Xu J, Shu H, Xia J, Liu H et al (2020) Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. Lancet Respir Med 8(5):475–481
Colombi D, Bodini FC, Petrini M, Maffi G, Morelli N, Milanese G et al (2020) Well-aerated lung on admitting chest CT to predict adverse outcome in COVID-19 pneumonia. Radiology 296(2):E86-96.https://doi.org/10.1148/radiol.2020201433
Sáenz Morales OA, Rubio AM, Yomayusa N, Gamba N, Garay Fernández M (2020) Coagulopatía en la infección por el virus SARS-CoV-2 (COVID-19): de los mecanismos fisiopatológicos al diagnóstico y tratamiento. Acta Colombiana de Cuidado Intensivo
Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. The Lancet [Internet]. 2020 Mar 28 [cited 2020 May 9];395(10229):1054–62. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0140673620305663
Singh K, Valley TS, Tang S, Li BY, Kamran F, Sjoding MW et al (2020) Validating a widely implemented deterioration index model among hospitalized COVID-19 patients. medRxiv. https://doi.org/10.1101/2020.04.24.20079012
Simonnet A, Chetboun M, Poissy J, Raverdy V, Noulette J, Duhamel A et al (2020) High prevalence of obesity in severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) requiring invasive mechanical ventilation. Obesity 28(7):1195–1199
Jiménez-Ruiz CA, López-Padilla D, Alonso-Arroyo A, Aleixandre-Benavent R, Solano-Reina S, de Granda-Orive JI (2021) COVID-19 y tabaquismo: revisión sistemática y metaanálisis de la evidencia. Arch Bronconeumol 57:21–34
Osasun Saila—Departamento de Salud. Campaña de vacunación antigripal 2019 [Internet]. Available from: https://www.euskadi.eus/gobierno-vasco/-/noticia/2019/osakidetza-presenta-la-campana-de-vacunacion-antigripal-2019/
WHO (2020) Manejo clínico de la infección respiratoria aguda grave (IRAG) en caso de sospecha de COVID-19. Mar 13 [Cited 2 Sep 2021]; Available from: https://apps.who.int/iris/bitstream/handle/10665/331660/WHO-2019-nCoV-clinical-2020.4-spa.pdf?sequence=1&isAllowed=y
Ministerio de Sanidad—Gobierno de España (2020) Manejo en urgencias del COVID-19. Jun 26 [Cited 2 Sep 2021]; Available from: https://www.mscbs.gob.es/profesionales/saludPublica/ccayes/alertasActual/nCov/documentos/Manejo_urgencias_pacientes_con_COVID-19.pdf