Modelling the Symphyotrichum lanceolatum invasion in Slovakia, Central Europe

Martina Michalová1, Michal Hrabovský1, Silvia Kubalová1, Tatiana Miháliková2
1Department of Botany, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
2Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Bratislava, Slovakia

Tóm tắt

Symphyotrichum lanceolatum (Willd.) G. L. Nesom is an alien invasive species in Europe, where it presents a potential threat to natural habitats. Its rapid expansion in recent decades raises questions and concerns about the causes and consequences of its spread in Slovakia. We investigated natural and anthropogenic habitats along with topographic and environmental factors, including changing climatic conditions such as air temperature and precipitation totals to adjust prediction models of the species distribution. Using 19 various algorithms, the models for the past, present, and future were calculated based on 395 octoploid populations selected by flow cytometry. The models revealed the potential species distribution along rivers and in human settlements and its increasing during the period 1970–2060 from 23.6 to 53.85% of the territory as a result of climatic change. A conditional inference tree indicates that the expansion can be limited by a mean annual air temperature below 8 °C and a pH of soil less than 5.5. Therefore, there is a high probability of the further spread of S. lanceolatum across Slovakia.

Tài liệu tham khảo

Ali F, Khan N, Khan AM, Ali K, Abbas F (2023) Species distribution modelling of Monotheca Buxifolia (Falc.) A. DC.: Present distribution and impacts of potential climate change. Heliyon 9:e13417. https://doi.org/10.1016/j.heliyon.2023.e13417 Allouche O, Tsoar A, Kadmon R (2006) Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). J Appl Ecol 43:1223–1232. https://doi.org/10.1111/j.1365-2664.2006.01214.x Antão LH, Weigel B, Strona G, Hällfors M, Kaarlejärvi E, Dallas T, Opedal ØH, Heliölä J, Henttonen H, Huitu O, Korpimäki E (2022) Climate change reshuffles northern species within their niches. Nat Clim Change 12:587–592. https://doi.org/10.1038/s41558-022-01381-x Barbet-Massin M, Jiguet F, Albert CH, Thuiller W (2012) Selecting pseudo‐absences for species distribution models: how, where and how many? Methods Ecol Evol 3:327–338. https://doi.org/10.1111/j.2041-210X.2011.00172.x Booth TH, Nix HA, Busby JR, Hutchinson MF (2014) BIOCLIM: the first species distribution modelling package, its early applications and relevance to most current MaxEnt studies. Divers Distrib 20:1–9. https://doi.org/10.1111/ddi.12144 Breiman L (2001) Random forests. Mach Learn 45:5–32. https://doi.org/10.1023/A:1010933404324 Breiman L, Friedman JH, Olshen RA, Stone CJ (1984) Classification and regression trees. Taylor & Francis, Boca Raton, Florida Briscoe Runquist RD, Lake T, Tiffin P, Moeller DA (2019) Species distribution models throughout the invasion history of Palmer Amaranth predict regions at risk of future invasion and reveal challenges with modeling rapidly shifting geographic ranges. Sci Rep 9:2426. https://doi.org/10.1038/s41598-018-38054-9 Broomhead DS, Lowe D (1988) Radial basis functions, multi-variable functional interpolation and adaptive networks. RSRE 4148:1–34 Caplat P, Coutts S, Buckley YM (2012) Modeling population dynamics, landscape structure, and management decisions for controlling the spread of invasive plants. Ann N Y Acad Sci 1249:72–83. https://doi.org/10.1111/j.1749-6632.2011.06313.x Carpenter G, Gillison AN, Winter J (1993) Domain: a flexible modelling procedure for mapping potential distributions of plants and animals. Biodivers Conserv 2:667–680 Chmielewski JG, Semple JC (2001) The biology of Canadian weeds. 113. Symphyotrichum lanceolatum (Willd.) Nesom [Aster lanceolatus Willd.] And S. Lateriflorum (L.) Löve and Löve [Aster lateriflorus (L.) Britt]. Can J Plant Sci 81:829–849. https://doi.org/10.4141/P00-056 Cho KH, Park J-S, Kim JH, Kwon YS, Lee D-H (2022) Modeling the distribution of invasive species (Ambrosia spp.) using regression kriging and maxent. Front Ecol Evol 10:1036816. https://doi.org/10.3389/fevo.2022.1036816 Chung HI, Choi Y, Yoo Y, Engler R, Lee K, Jeon SW (2022) Integrated spatial model based evaluation methodology for optimal invasive species management: common ragweed in the Republic of Korea. Environ Res Lett 17:034047. https://doi.org/10.1088/1748-9326/ac4dc7 Chytrý M, Danihelka J, Kaplan Z, Wild J, Holubová D, Novotný P, Řezníčková M, Rohn M, Dřevojan P, Grulich V, Klimešová J, Lepš J, Lososová Z, Pergl J, Sádlo J, Šmarda P, Štěpánková P, Tichý L, Axmanová I, Bartušková A, Blažek P, Chrtek J Jr, Fischer FM, Guo W-Y, Herben T, Janovský Z, Konečná M, Kühn I, Moravcová L, Petřík P, Pierce S, Prach K, Prokešová H, Štech M, Těšitel J, Těšitelová T, Večeřa M, Zelený D, Pyšek P (2021) Pladias Database of the Czech Flora and Vegetation. Preslia 93:1–87. https://doi.org/10.23855/preslia.2021.001 Coutts SR, van Klinken RD, Yokomizo H, Buckley YM (2011) What are the key drivers of spread in invasive plants: dispersal, demography or landscape: and how can we use this knowledge to aid management? Biol Invasions 13:1649–1661. https://doi.org/10.1007/s10530-010-9922-5 Davis MA, Grime JP, Thompson K (2000) Fluctuating resources in plant communities: a general theory of invasibility. J Ecol 88:528–534. https://doi.org/10.1046/j.1365-2745.2000.00473.x Descombes P, Chauvier Y, Brun P, Righetti D, Wüest RO, Karger DN, Zurell D, Zimmermann NE (2022) Strategies for sampling pseudo-absences for species distribution models in complex mountainous terrain. https://doi.org/10.1101/2022.03.24.485693. BioRxiv 2022-03 Deutsch CA, Tewksbury JJ, Huey RB, Sheldon KS, Ghalambor CK, Haak DC, Martin PR (2008) Impacts of climate warming on terrestrial ectotherms across latitude. PNAS 105:6668–6672. https://doi.org/10.1073/pnas.070947210 Dirkse GM, Duistermaat H, Zonneveld BJM (2014) Morphology and genome weight of Symphyotrichum species (Asteraceae) along rivers in the Netherlands. New J Bot 4:134–142. https://doi.org/10.1179/2042349714Y.0000000049 Dostál J (1950) Květena ČSR. Československá botanická společnost, Praha Endlicher SL (1830) Flora Posoniensis, Exhibens Plantas Circa Posonium Sponte crescentes aut frequentius cultas, methodo naturali dispositas. Apud J. Landes, Posonii Essl F, Rabitsch W (2002) Neobiota in Österreich. Umweltbundesamt, Wien Farashi A, Alizadeh-Noughani M (2023) Basic introduction to species distribution modelling. Ecosystem and Species Habitat modeling for Conservation and Restoration. Springer Nature, Singapore, pp 21–40 Fehér A (2007) Historical reconstruction of expansion on non-native plants in the Nitra River Basin (SW Slovakia). Kanitzia 15:47–62 Fehér A (2008) Aster species from North America (Aster novi-belgii agg). In: Botta-Dukát Z, Balogh L (eds) The most important invasive plants in Hungary, Institute of Ecology and Botany. Hungarian Academy of Sciences, Vácrátót, pp 179–187 Fernandez M, Sillero N, Yesson C (2022) To be or not to be: the role of absences in niche modelling for highly mobile species in dynamic marine environments. Ecol Modell 471:110040. https://doi.org/10.1016/j.ecolmodel.2022.110040 Fick SE, Hijmans RJ (2017) WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int J Climatol 37:4302–4315. https://doi.org/10.1002/joc.5086 Friedman J (1991) Multivariate adaptive regression splines (with discussion). Ann Stat 19:1–141 Friedman J, Hastie T, Tibshirani R (2010) Regularization paths for generalizedlinear models via coordinate descent. J Stat Softw 33:1–22. https://doi.org/10.18637/jss.v033.i01 Futák J (1984) Fytogeografické členenie Slovenska. In: Bertová L (ed) Flóra Slovenska IV/1. Veda, Bratislava, p 418–420 Guillera-Arroita G, Lahoz‐Monfort JJ, Elith J, Gordon A, Kujala H, Lentini PE, McCarthy MA, Tingley R, Wintle BA (2015) Is my species distribution model fit for purpose? Matching data and models to applications. Glob Ecol Biogeogr 24:276–292. https://doi.org/10.1111/geb.12268 Hardin ED, Wistendahl WA (1983) The effects of floodplain trees on herbaceous vegetation patterns, microtopography and litter. Bull Torrey Bot Club 110:23–30. https://doi.org/10.2307/2996513 Hastie T, Tibshirani R (1986) Generalized additive models. Statist Sci 1:1297–1310. https://doi.org/10.1214/ss/1177013604 Hastie T, Tibshirani R (1996) Discriminant analysis by Gaussian mixtures. J R Stat Soc Series B Stat Methodol 58:155–176. https://doi.org/10.1111/j.2517-6161.1996.tb02073.x Hastie T, Tibshirani R, Buja A (1994) Flexible discriminant analysis by optimal scoring. J Am Stat Assoc 89:1255–1270 Hejda M, Sádlo J, Kutlvašr J, Petřík P, Vítková M, Vojík M, Pyšek P, Pergl J (2021) Impact of invasive and native dominants on species richness and diversity of plant communities. Preslia 93:181–201. https://doi.org/10.23855/preslia.2021.181 Higgins SI, Richardson DM, Cowling RM (1996) Modeling invasive plant spread: the role of plant-environment interactions and Model structure. Ecology 77:2043–2054. https://doi.org/10.2307/2265699 Hothorn T, Hornik K, Zeileis A (2006) Unbiased recursive partitioning: a conditional inference Framework. J Comput Graph Stat 15:651–674. https://doi.org/10.1198/106186006X133933 Jarnevich C, Engelstad P, LaRoe J, Hays B, Hogan T, Jirak J, Pearse I, Prevéy J, Sieracki J, Simpson A, Wenick J, Young N, Sofaer HR (2023) Invaders at the doorstep: using species distribution modeling to enhance invasive plant watch lists. Ecol Inf 75:101997. https://doi.org/10.1016/j.ecoinf.2023.101997 Jaynes JT (1957) Information theory and statistical mechanics. Phys Rev 106:620–630. https://doi.org/10.1103/PhysRev.106.620 Kaplan Z, Danihelka J, Chrtek J Jr, Kirschner J, Kubát K, Štěpánek J, Štech M (2019) Klíč Ke květeně České republiky. Academia, Praha Kochjarová J, Blanár D, Jarolímek I, Slezák M (2023) Wildlife supplementary feeding facilitates spread of alien plants in forested mountainous areas: a case study from the western carpathians. Biologia 78:1381–1389. https://doi.org/10.1007/s11756-023-01339-0 Láníková D (2009) Asteretum lanceolati Holzner 1978. In: Chytrý M (ed), Vegetace České republiky. 2. Ruderální, plevelová, skalní a suťová vegetace [Vegetation of the Czech Republic 2. Ruderal, weed, rock and scree vegetation], Academia, Praha, pp 370–372 Lastrucci L, Landucci F, Gonnelli V, Barocco R, Foggi B, Venanzoni R (2012) The vegetation of the upper and middle River Tiber (Central Italy). Plant Sociol 49:29–48. https://doi.org/10.7338/pls2012492/02 Ličina V, Nešić LJ, Belić M, Hadžić V, Sekulić P, Vasin J, Ninkov J (2011) The soils of Serbia and their degradation. Ratar Povrt 48:285–290 Liu J, Niyogi D (2019) Meta-analysis of urbanization impact on rainfall modification. Sci Rep 9:7301. https://doi.org/10.1038/s41598-019-42494-2 Liu C, White M, Newell G (2013) Selecting thresholds for the prediction of species occurrence with presence-only data. J Biogeogr 40:778–789. https://doi.org/10.1111/jbi.12058 Liu Z, Zhan W, Bechtel B, Voogt J, Lai J, Chakraborty T, Wang ZH, Li M, Huang F, Lee X (2022) Surface warming in global cities is substantially more rapid than in rural background areas. Commun Earth Environ 3:219. https://doi.org/10.1038/s43247-022-00539-x Mahalanobis PC (1930) On test and measures of group divergence: theoretical formulae. J Asiat Soc Bengal new ser 26:541–588 Májeková J, Jarolímek I, Zaliberová M, Medvecká J (2021) Alien (invasive) vascular plants in Slovakia – a story of successful plant immigrants. Environ Socio-econ Stud 9:23–31. https://doi.org/10.2478/environ-2021-0022 Mang T, Essl F, Moser D, Karrer G, Kleinbauer I, Dullinger S (2017) Accounting for imperfect observation and estimating true species distributions in modelling biological invasions. Ecography 40:1187–1197. https://doi.org/10.1111/ecog.02194 Mears JA (1978) Some sources of the Herbarium of Henry Muhlenberg (1753–1815). Proc Am Philos Soc 122:155–174 Medvecká J, Kliment J, Májeková J, Halada Ľ, Zaliberová M, Gojdičová E, Feráková V, Jarolímek I (2012) Inventory of the alien flora of Slovakia. Preslia 84:257–309 Meinert S, Ottich I, Zizka G (2009) Antropochore Aster-Arten (Asteraceae) in Frankfurt am Main. Bot Naturschutz Hess 22:91–106 Merow C, Smith MJ, Silander JA Jr (2013) A practical guide to MaxEnt for modeling species’ distributions: what it does, and why inputs and settings matter. Ecography 36:1058–1069. https://doi.org/10.1111/j.1600-0587.2013.07872.x Metzger MJ, Bunce RGH, Jongman RHG, Mücher CA, Watkins JW (2005) A climatic stratification of the environment of Europe. Glob Ecol Biogeogr 14:549–563. https://doi.org/10.1111/j.1466-822x.2005.00190.x Mikulová K, Jarolímek I, Šibík J, Bacigál T, Šibíková M (2020) Long-term changes of Softwood Floodplain forests—did the disappearance of Wet Vegetation accelerate the Invasion process? Forests 11:1218. https://doi.org/10.3390/f11111218 Mkala EM, Mutinda ES, Wanga VO, Oulo MA, Oluoch WA, Waswa EN, Odago W, Nanjala C, Mwachala G, Hu GW, Wang QF (2022) Modeling impacts of climate change on the potential distribution of three endemic Aloe species critically endangered in East Africa. Ecol Inf 71:101765. https://doi.org/10.1016/j.ecoinf.2022.101765 Murín A, Feráková V (1978) Aster lanceolatus. In: J. Májovský Index of Chromosome Numbers of Slovakian Flora (Part 6). Acta Fac Rerum Nat Univ Comen Bot 26:25 Naimi B, Araújo MB (2016) Sdm: a reproducible and extensible R platform for species distribution modelling. Ecography 39:368–375. https://doi.org/10.1111/ecog.01881 Nees von Esenbeck CG (1833) Genera et species asterearum: Recensuit, Descriptionibus et animadversionibus illustravit. Sumtibus Leonardi Schrag, Norimberg Nelder JA, Wedderburn RWM (1972) Generalized Linear models. J R Stat Soc Series A (General) 135:370–384. https://doi.org/10.2307/2344614 Nešić M (2017) Biologija i ekologija invazivne vrste Aster lanceolatus Willd. Complex. Doktorska disertacija, Univerzitetu Beogradu, Šumarski fakultet, Beograd Nešić M, Obratov-Petković D, Skočajić D, Bjedov I (2013) Seed quantity and quality in fruit heads of Aster lanceolatus Willd.: implications for invasion success. Bull Fac for 108:129–144 Nešić M, Obratov-Petković D, Skočajić D, Bjedov I, Đukić M, Đunisijević-Bojović D (2016) Allelopathic potential of the invasive species Aster lanceolatus Willd. Period biol 118:1–7. https://doi.org/10.18054/pb.2016.118.1.2816 Nešić M, Obratov-Petković D, Skočajić D, Bjedov I, Čule N (2022) Factors affecting seed germination of the invasive species Symphyotrichum lanceolatum and their implication for invasion success. Plants 11:969. https://doi.org/10.3390/plants11070969 Niklfeld H (1971) Bericht über die Kartierung Der Flora Mitteleuropas. Taxon 20:545–571 Nix HA (1986) A biogeographic analysis of Australian elapid snakes. Atlas of elapid snakes of Australia: Australian flora and fauna series 7. Bureau of Flora and Fauna, Canberra, pp 4–15 O’Reilly-Nugent A, Palit R, Lopez-Aldana A, Medina-Romero M, Wandrag E, Duncan RP (2016) Landscape effects on the spread of Invasive species. Curr Landsc Ecol Rep 1:107–114. https://doi.org/10.1007/s40823-016-0012-y Obratov-Petković D, Bjedov I, Radulović S, Skočajić D, Đunisijević-Bojović D, Đukić M (2009) Ecology and distribution of an invasive species Aster lanceolatus Willd. On wet habitats in Belgrade. Bull Fac for 100:159–178 Obratov-Petković D, Bjedov I, Skočajić D, Đunisijević-Bojović D, Đukić M, Grbić M (2011) Asteretum lanceolati: xenospontaneous community on wet and riparian habitats. Bull Fac for 103:73–92 Obratov-Petković D, Bjedov I, Jurišić B, Đukić M, Đunisijević-Bojović D, Skočajić D, Grbić M (2013) Influence of some environmental factors on the distribution of the invasive species Aster lanceolatus Willd. In various Serbian habitats. Fresenius Environ Bull 22:1677–1688 Obratov-Petković D, Bjedov I, Nešić M, Simić SB, Đunisijević-Bojović D, Skočajić D (2016) Impact of Invasive Aster lanceolatus populations on Soil and Flora in Urban sites. Pol J Ecol 64:289–295. https://doi.org/10.3161/15052249PJE2016.64.2.012 Pearson RG, Raxworthy CJ, Nakamura M, Townsend Peterson A (2007) Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. J Biogeogr 34:102–117. https://doi.org/10.1111/j.1365-2699.2006.01594.x Phillips SJ, Dudík M (2008) Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31:161–175. https://doi.org/10.1111/j.0906-7590.2008.5203.x Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190:231–259. https://doi.org/10.1016/j.ecolmodel.2005.03.026 Prach K, Jedlička J (2006) A comparison of two north-american asters invading in Central Europe. Flora 201:652–657. https://doi.org/10.1016/j.flora.2006.01.002 Priszter S (1997) A magyar adventívflóra kutatása. Bot Közlemények 84:25–32 Procopio M, Marriott PK (1998) Seasonality of birth in epilepsy: a Danish study. Acta Neurol Scand 98:297–301 Pyšek P, Sádlo J, Mandák B (2002) Catalogue of alien plants of the Czech Republic. Preslia 74:97–186 Pyšek P, Danihelka J, Sádlo J, Jr Chrtek J, Chytrý M, Jarošík V, Kaplan Z, Krahulec F, Moravcová L, Pergl J, Štajerová K, Tichý L (2012a) Catalogue of alien plants of the Czech Republic (2nd edition): checklist update, taxonomic diversity and invasion patterns. Preslia 84:155–255 Pyšek P, Jarošík V, Hulme PE, Pergl J, Hejda M, Schaffner U, Vilà M (2012b) A global assessment of invasive plant impacts on resident species, communities and ecosystems: the interaction of impact measures, invading species’ traits and environment. Glob Change Biol 18:1725–1737. https://doi.org/10.1111/j.1365-2486.2011.02636.x Pyšek P, Chytrý M, Pergl J, Sádlo J, Wild J (2017) Plant invasions in the Czech Republic. In: Chytrý M, Danihelka J, Kaplan Z, Pyšek P (eds) Flora and Vegetation of the Czech Republic. Springer International Publishing AG, pp 339–399 Qazi AW, Saqib Z, Zaman-ul-Haq M (2022) Trends in species distribution modelling in context of rare and endemic plants: a systematic review. Ecol Process 11:1–11. https://doi.org/10.1186/s13717-022-00384-y Qin Z, Zhang JE, DiTommaso A, Diez JM, Zhao Y, Wang FG (2022) Predicting the potential distribution of three allergenic invasive Ambrosia (ragweed) species in Asia. J Environ Inform 39:49–66. https://doi.org/10.3808/jei.202000444 Radosavljevic A, Anderson RP (2014) Making better Maxent models of species distributions: complexity, overfitting and evaluation. J Biogeogr 41:629–643. https://doi.org/10.1111/jbi.12227 Rendeková A, Miškovic J, Mičieta K (2019) Ruderal plant communities from the ordo Lamio Albi-Chenopodietalia boni-henrici Kopecký 1969 in Bratislava city. Acta Bot Univ Comen 54:7–19 Řepka R, Šebesta J, Maděra P, Vahalík P (2015) Comparison of the floodplain forest floristic composition of two riparian corridors: species richness, alien species and the effect of water regime changes. Biologia 70:208–217. https://doi.org/10.1515/biolog-2015-0021 Reuss G (1853) Května Slovenska. Tiskem F. Lorbera, Banská Štiavnica Rosenblatt F (1958) The Perceptron: a probabilistic model for information storage and organization in the brain. Psychol Rev 65:386–408. https://doi.org/10.1037/h0042519 Royle JA, Chandler RB, Yackulic C, Nichols JD (2012) Likelihood analysis of species occurrence probability from presence-only data for modelling species distributions. Methods Ecol Evol 3:545–554. https://doi.org/10.1111/j.2041-210X.2011.00182.x Sadayappan K, Kerins D, Shen C, Li L (2022) Nitrate concentrations predominantly driven by human, climate, and soil properties in US rivers. Water Res 226:119295. https://doi.org/10.1016/j.watres.2022.119295 Schapire RE (2003) The Boosting Approach to Machine Learning: an overview. Nonlinear estimation and classification. Springer, New York, pp 149–171. https://doi.org/10.1007/978-0-387-21579-2_9 Schmiedel D, Wilhelm E-G, Nehring S, Scheibner C, Roth M, Winter S (2015) Management-Handbuch zum Umgang mit gebietsfremden Arten in Deutschland. Band 1: Pilze, Niedere Pflanzen und Gefäßpflanzen. Naturschutz und Biologische Vielfalt 141/1, Landwirtschaftsverlag, Bonn-Bad Godesberg Scholler FA (1787) Supplementum Florae Barbiensis. Typ. Spellenbergianis, Barby Šebesta J, Rogers PC, Maděra P, Koutecký T, Dufour S, Řepka R (2021) Long-term effects of mechanical site preparation on understorey plant communities in lowland floodplain forests. For Ecol Manag 480:118651. https://doi.org/10.1016/j.foreco.2020.118651 Serrano-Notivoli R, Longares LA, Cámara R (2022) Bioclim: an R package for bioclimatic classifications via adaptive water balance. Ecol Inf 71:101810. https://doi.org/10.1016/j.ecoinf.2022.101810 Skálová H, Guo W-Y, Wild J, Pyšek P (2017) Ambrosia artemisiifolia in the Czech Republic: history of invasion, current distribution and prediction of future spread. Preslia 89:1–16. https://doi.org/10.23855/preslia.2017.001 Stewart SB, Fedrigo M, Kasel S, Roxburgh SH, Choden K, Tenzin K, Allen K, Nitschke CR (2022) Predicting plant species distributions using climate-based model ensembles with corresponding measures of congruence and uncertainty. Divers Distrib 28:1105–1122. https://doi.org/10.1111/ddi.13515 Szumańska I, Lubińska-Mielińska S, Kamiński D, Rutkowski L, Nienartowicz A, Piernik A (2021) Invasive plant species distribution is structured by Soil and Habitat Type in the City Landscape. Plants 10:773. https://doi.org/10.3390/plants10040773 Tabašević M, Jovanović S, Lakušić D, Vukojičić S, Kuzmanović N (2021) Diversity of Ruderal communities in Urban Environments—A Case Study from Serbia (SE Europe). Diversity 13:638. https://doi.org/10.3390/d13120638 Temsch EM, Koutecký P, Urfus T, Šmarda P, Doležel J (2022) Reference standards for flow cytometric estimation of absolute nuclear DNA content in plants. Cytometry 101:710–724. https://doi.org/10.1002/cyto.a.24495 Therneau TM, Atkinson EJ (1997) An introduction to recursive partitioning using the RPART routines. Divsion of Biostatistics, Mayo Clinic, Technical report 61 Tison J-M, de Foucault B (2014) Flora Gallica. Flore de France. Editions Biotope, Mèze Vapnik VN, Chervonenkis AY (1964) On a class of perceptrons. Avtomatika i Telemekhanika 25:112–120 Verloove F (2006) Aster lanceolatus In: Van Landuyt W, Hoste I, Vanhecke L, Van den Bremt P, Vercruysse W, De Beer D (eds), Atlas van de flora van Vlaanderen en het Brussels gewest, Instituut voor Natuur- en Bosonderzoek, Nationale Plantentuin van België en Flo.Wer., pp 168–169 Viruel J, Conejero M, Hidalgo O, Pokorny L, Powell RF, Forest F, Kantar MB, Soto Gomez M, Graham SW, Gravendeel B, Wilkin P, Leitch IJ (2019) A Target capture-based method to Estimate Ploidy from Herbarium specimens. Front Plant Sci 10:937. https://doi.org/10.3389/fpls.2019.00937 Vujanović D, Losapio G, Milić S, Milić D (2022) The impact of multiple species Invasion on Soil and Plant communities increases with invasive species co-occurrence. Front Plant Sci 13:875824. https://doi.org/10.3389/fpls.2022.875824 Wang X, Xu Q, Liu J (2023) Determining representative pseudo-absences for invasive plant distribution modeling based on geographic similarity. Front Ecol Evol 11:1193602. https://doi.org/10.3389/fevo.2023.1193602 Warren DL, Matzke NJ, Cardillo M, Baumgartner JB, Beaumont LJ, Turelli M, Glor RE, Huron NA, Simões M, Iglesias TL, Piquet JC, Dinnage R (2021) ENMTools 1.0: an R package for comparative ecological biogeography. Ecography 44:504–511. https://doi.org/10.1111/ecog.05485 Wedin DA, Tilman D (1996) Influence of nitrogen loading and species composition on the carbon balance of grasslands. Science 274:1720–1723