Modelling the Influence of Climatic Factors on the Population Dynamics of Radopholus Similis: Banana-Plantain Pest

Acta Biotheoretica - Tập 70 - Trang 1-26 - 2022
S. Fotso1,2,3, G. Kolaye4,2,3, J. Ntahomvukiye5,2,3, S. Bowong6,2,3, V. Taffouo1
1Laboratory of Biology and Physiology of plant organisms, Department of Biology of Plant Organisms, Faculty of Science, University of Douala, Douala, Cameroon
2IRD, Sorbonne University, UMMISCO, Bondy, France
3EPITAG Project, BIOCORE, Sophia Antipolis, France
4Department of Mathematics and Computer Science, Faculty of Science, University of Maroua, Maroua, Cameroon
5Department of Mathematics, Faculty of Science, University of Burundi, Bujumbura, Burundi
6Department of Mathematics and Computer Science, Faculty of Science, University of Douala, Douala, Cameroon

Tóm tắt

Radopholus Similis (R. Similis) or burrowing nematode, is one of the most damaging and widespread nematodes attacking bananas, causing toppling or blackhead disease. A mathematical model for the population dynamics of R. Similis is considered, with the aim of investigating the impact of climatic factors on the growth of R. Similis. In this paper, based on the life cycle of R. Similis, we first propose a mathematical model to study and control the population dynamics of this banana pest. We show also how control terms based on biological and chemical controls can be integrated to reduce the population of R. Similis within banana-plantain roots. Sensitivity analysis was performed to show the most important parameters of the model. We present the theoretical analysis of the model. More precisely, we derive a threshold parameter $${\mathcal{N}}_0$$ , called the basic offspring number and show that the trivial equilibrium is globally asymptotically stable whenever $${\mathcal{N}}_0\le 1$$ , while when $${\mathcal{N}}_0> 1$$ , the non trivial equilibrium is globally asymptotically stable. After, we extend the proposed model by taking account climatic factors that influence the growth of this pest. Biological and chemical controls are now introduced through impulsive equations. Threshold and equilibria are obtained and global stabilities have been studied. The theoretical results are supported by numerical simulations. Numerical results of model with biological and chemical controls reveal that biological methods are more effective than chemical methods. We also found that the month February is the best time to apply these controls.

Tài liệu tham khảo

Anguelov R, Dumont Y, Lubuma J (2012) Mathematical modeling of sterile insect technology for control of anopheles mosquito. Comput Math Appl 64(3):374–389 Anguelov R, Dufourd C, Dumont Y (2017) Mathematical model for pestnsect control using mating disruption and trapping. Appl Math Model 52:437–457 Blake CD (1972) Nematode diseases of banana plantations. Nematode diseases of banana plantations Brooks TL, Perry VG (1962) Apparent parthenogenetic reproduction of the burrowing nematode Radopholus similis (Cobb) Thorne. In: Soil and Crop Science Society of Florida proceedings, vol 22, pp 160–162 Cayrol J-C, Djian-Caporalino C, Panchaud-Matte E (2019) la lutte biologique contre les Nématodes phytoparasites. Courrier de la Cellule Environnement de l’INRA Numéro 17 Chabrier C (2008) Survie et dissémination du nématode Radopholus Similis (Cobb) Thorne dans les sols bruns-rouilles à halloysites (nitisols): effets de l’état hydrique et des flux hydriques (2008). Thèse présentée et soutenue publiquement le 17 Juin 2008 Chabrier C, Mauléon H, Bertrand P, Lassoudière A, Quénéhervé P (2005) En Martinique, méthodes alternatives pour réduire l’utilisation des nématicides et insecticides en bananeraies. PHYTOMA. La Défense des Végétaux Numéro 584, Juillet-Août 2005 Diekmann O, Heesterbeek JAP, Metz JA (1990) On the definition and the computation of the basic reproduction ratio R0 in models for infectious diseases in heterogeneous populations. J Math Biol 28(4):365–382 Diekmann O, Heesterbeek JAP, Roberts MG (2010) The construction of next-generation matrices for compartmental epidemic models. Journal of the Royal Society Interface 7(47):873–885 Ducharme P, Price C (1966) Dynamics of multiplication of Radopholus Similis 1. Nematologica 12: 113–121 Ferguson N (2007) Capturing human behaviour. Nature 446(71–37):733 Funk S, Salathé M, Jansen VAA (2010) Modeling the influence of human behaviour on the spread of infectious diseases: a review. J R Soc Interfaces 7:1247–1256 Holling CS (1959) The components of predation as revealed by a study of small-mammal predation of the European pine sawfly. Can Entomol 91(5):293–320 Howard F (2019) http://nemaplex.ucdavis.edu/Taxadata/G111s2.aspx. Revised 19 Nov 2019 Jifa J (1993) The algebraic criteria for the asymptotic behavior of cooperative systems with concave nonlinearities. Syst Sci Math Sci 6(3):193–208 Kaplan DT, Opperman CH (2000) Reproductive strategies and karyotype of the burrowing nematode, Radopholus similis. J Nematol 32(2):126 Kolaye G, Damakoa I, Bowong S, Houe R, Békollé D (2018) Theoretical assessment of the impact of climatic factors in a vibrio cholerae model. Acta Biotheoret 66(4):279–291 Kolaye G, Damakoa I, Bowong S, Houe R, Békollé D (2020) A mathematical model of cholera in a periodic environment with control actions. Int J Biomath 13(4): 2050025 Lassoudiere A (2007) Le bananier et sa culture. Editions Quae, Paris Lescot T (1999) Banane: production, commerce et variétés. Fruitrop 63: 13–16 Marin DH, Sutton TB, Barker KR (1998) Dissemination of bananas in Latin America and the Caribbean and its relationship to the occurrence of Radophouls Similis. Plant Dis 82(9):964–974 Nimalan A, Natsuko I Arran (2021) Mathematical modelling for the control of infectious diseases. Short courses, 6–15 September 2021. Department of Infectious Disease Epidemiology, Imperial College London, London Pinochet J (1986) A note on nematode control practices on bananas in Central America. Nematropica 16: 197–203 Plantain banana: economic importance of plantain in Cameroon (2013) The voice of the farmer, LVDP (La voix du paysan) Num 260–January 2013 Putter I, Mac Connell JG, Preiser FA, Haidri AA, Ristich SS, Dybas RA (1981) Avermectins: novel insecticides, acaricides and nematicides from a soil microorganism. Experientia 37(9):963–964 Saltelli A, Tarantola S, Chan KS (1999) A quantitative model-independent method for global sensitivity analysis of model output. Technometrics 41(1):39–56 Saltelli A, Tarantola S, Campolongo F, Ratto M (2004) Sensitivity analysis in practice: a guide to assessing scientific models, vol 1. Wiley, New York Sarah J-L, Pinochet J, Stanton J (1996) Parasites et ravageurs des Musa - fiche technique n1: Radopholus similis Cobb, Nematode Parasite Des Bananiers Simeonov P (2017) Impulsive differential equations: periodic solutions and applications. Routledge, Abingdon Smith HL (1996) Monotone dynamical systems: an introduction to the theory of competitive and cooperative systems. Bull New Series) Am Math Soc 33: 203–209 Van den Driessche P, Watmough J (2002) Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math Biosci 180(1–2):29–48