Modelling of linearly chirped fiber Bragg gratings by the method of single expression
Tóm tắt
To model chirped fiber Bragg gratings (FBGs) for dispersion compensation in optical fibers a novel method of single expression (MSE) is used. The reformulation of Helmholtz's equation in the MSE to the full set of first-order differential equations leads to dealing with the electric field amplitude, its derivative, power flow density and phase distributions in any aperiodic media. The phase derivative obtained numerically permits to compute the dispersion slope in the time delay of investigated chirped gratings. Reflective and time delay spectra of linearly chirped gratings of different lengths and chirp coefficients are computed. A self-similarity law for the gratings of the same strength but different lengths and chirp coefficients is revealed. The apodization of gratings is applied to reduce sidelobes in gratings' reflection spectra and eliminate oscillations in the time delay characteristics.
Tài liệu tham khảo
Atkinson, D., W.H. Loh, J.J. O'Reilly and R.L. Laming. IEEE Photon. Technol. Lett. 8 1085, 1996.
Baghdasaryan, H.V. Method of backward calculation, In Photonic Devices for Telecommunications (How to model and measure), ed. G. Guekos, 56–65, Springer-Verlag, 1999.
Baghdasaryan, H.V, G.G. Karapetyan, S.I. Avagyan, T.M. Knyazyan, G.M. Haroutounyan. In 43rd International Scientific Colloquium, Technical University of Ilmenau, C1.3., 1998.
Baghdasaryan, H.V., G.G. Karapetyan, T.M. Knyazan, S.I. Avagyan and N.K. Uzunoglu. In COST 240 Workshop, SOA-based Components for Optical Networks, pp. 18–1–18–3. Prague, 1997.
Baghdasaryan, H.V. and T.M. Knyazyan. Opt. Quant. Electron. (Special Issue) 31 1059, 1999.
Baghdasaryan, H.V. and T.M. Knyazyan. Opt. Quant. Electron. (Special Issue) 32 869, 2000.
Baghdasaryan, H.V. and T.M. Knyazyan. In ECIO'01 (Conference Proceedings), pp. 429–432. Paderborn, Germany, 2001.
Baghdasaryan, H.V., T.M. Knyazan, S.I. Avagyan. In ICTON'99 (Conference proceedings), pp. 57–60. Kielce, Poland, 1999.
Born, M and E. Wolf, Principles of Optics, MacMillan, New York, 1964.
Byron, K.C., K. Sugden, T. Bricheno and I. Bennion. Electr. Lett. 29 1659, 1993.
Erdogan, T. IEEE J. Lightwave Technol. 15 1277, 1997.
Farries, M.C., C.M. Ragdale and D.C.J. Reid. Electr. Lett. 28 487, 1992.
Hill, K.O., F. Bilodeau, B. Malo, T. Kitagawa, S. Theriault, D.C. Johnson, J. Albert and Takiguchi. Opt. Lett. 19 1314, 1994.
Kashyap, R. Fiber Bragg gratings, Academic Press, San Diego, CA, USA, 1999.
Knyazyan, T.M. Elaboration of nonlinear optical filters for the needs of multichannel fiber optics communication. PhD Thesis, Yerevan State University, Yerevan, 2000 (in Russian).
Kogelnik, H. Bell Syst. Tech. J. 55 109, 1976.
Othonos, A and K. Kalli. Fiber Bragg gratings. Fundamentals and applications in Telecommunications and Sensing, Artech House, 1999.
Poladian, L. J. Opt. Soc. Am. A 11 1846, 1994.
Russell, P.St.J. J. Modern Opt. 38 1599, 1991.
Sipe, J.E., L. Poladian, and C. Martijn de Sterke. J. Opt. Soc. Am. A 11 1307, 1994.
Williams, J.A.R., L.A. Everall, I. Bennion and N.J. Doran. IEEE Photon. Technol. Lett. 8 1187, 1996.
Winick, K.A. Appl. Optics 31 757, 1992.