Modelling ectotherms’ populations considering physiological age structure and spatial motion: A novel approach

Ecological Informatics - Tập 70 - Trang 101703 - 2022
Luca Rossini1, Nicolás Bono Rosselló2, Mario Contarini1, Stefano Speranza1, Emanuele Garone2
1Dipartimento di Scienze Agrarie e Forestali, Università degli Studi della Tuscia, Via San Camillo De Lellis snc 01100 Viterbo, Italy
2Service d’Automatique et d’Analyse des Systèmes, Universitè Libre de Bruxelles (ULB) Av. F.D. Roosvelt 50, CP 165/55, Brussels, 1050, Belgium

Tài liệu tham khảo

Ahmed, 2019, Analysing the impact of trap shape and movement behaviour of ground-dwelling arthropods on trap efficiency, Method Ecol. Evol., 10, 1246, 10.1111/2041-210X.13207 Ainseba, 2000, On a population dynamics control problem with age dependence and spatial structure, J. Mathemat. Anal. Appl., 248, 455, 10.1006/jmaa.2000.6921 Ainseba, 2001, Age-dependent population dynamics with diffusion, Abst. Appl. Anal., 0, 357, 10.1155/S108533750100063X Aylaj, 2021, On the interaction between soft and hard sciences: the role of mathematical sciences, Vietnam J. Mathemat., 49, 3, 10.1007/s10013-019-00381-3 Bellagamba, 1987, Stochastic models in fruit-fly population dynamics, 91 Berg, 1998, The infinite island model with sex-differentiated gene flow, Heredity, 81, 63, 10.1046/j.1365-2540.1998.00358.x Bono Rossello, 2019, A novel Observer-based Architecture for water management in large-scale (Hazelnut) orchards, IFAC Pap. Online, 52, 62, 10.1016/j.ifacol.2019.12.498 Briere, 1999, A novel rate model of temperature-dependent development for arthropods, Environ. Entomol., 28, 22, 10.1093/ee/28.1.22 Brunetti, 2020, A mathematical model for Xylella fastidiosa epidemics in the mediterranean regions. Promoting good agronomic practices for their effective control., Ecol. Modell., 432, 109204, 10.1016/j.ecolmodel.2020.109204 Buffoni, 2020, Numerical methods for the solution of PDE describing the stochastic development of an age-structured population, Computer science and mathematical methods in plant protection Buffoni, 2007, Structured population dynamics: continuous size and discontinuous stage structures, J. Math. Biol., 54, 555, 10.1007/s00285-006-0058-2 Cardé, 2008, Navigational strategies used by insects to find distant, wind-borne sources of odor, J. Chem. Ecol., 34, 854, 10.1007/s10886-008-9484-5 Cavaletto, 2021, Ambrosia beetle response to ethanol concentration and host tree species, J. Appl. Entomol., 12895 Clymans, 2020, Marking drosophila suzukii (diptera: drosophilidae) with fluorescent dusts, Insects, 11, 152, 10.3390/insects11030152 Cohen, 1981, A generalized diffusion model for growth and dispersal in a population, J. Math. Biol., 12, 237, 10.1007/BF00276132 Cook, 2007, The use of push-pull strategies in integrated pest management, Annu. Rev. Entomol., 52, 375, 10.1146/annurev.ento.52.110405.091407 Currier, 2018, Multisensory control of orientation in tethered flying drosophila, Curr. Biol., 28, 3533, 10.1016/j.cub.2018.09.020 Damos, 2016, Using multivariate cross correlations, granger causality and graphical models to quantify spatiotemporal synchronization and causality between pest populations, BMC Ecol., 16, 33, 10.1186/s12898-016-0087-7 Dangles, 2019, Ecosystem services provided by insects for achieving sustainable development goals, Ecosys. Ser., 35, 109, 10.1016/j.ecoser.2018.12.002 Demir, 2020, Walking drosophila navigate complex plumes using stochastic decisions biased by the timing of odor encounters, eLife, 9, 1, 10.7554/eLife.57524 Di Blasio, 1977, Age-dependent population dynamics, atti della accademia nazionale dei lincei. classi di scienze fisiche, Mathemat. Naturali., 8, 175 Di Blasio, 1978, An initial-boundary value problem for age-dependent population diffusion, STAM J. Appl. Mathemat., 35, 593 El-Sayed, 2006, Potential of mass trapping for long-term pest management and eradication of invasive species, J. Econ. Entomol., 99, 1550, 10.1093/jee/99.5.1550 Emiljanowicz, 2014, Development, reproductive output and population growth of the fruit fly pest drosophila suzukii (diptera: drosophilidae) on artificial diet, J. Econ. Entomol., 107, 1392, 10.1603/EC13504 Feng, 2009, Seasonal migration of helicoverpa armigera (lepidoptera: noctuidae) over the bohai sea, J. Econ. Entomol., 102, 95, 10.1603/029.102.0114 Gatehouse, 1997, Behavior and ecological genetics of wind-borne migration by insects, Annu. Rev. Entomol., 42, 475, 10.1146/annurev.ento.42.1.475 Gilioli, 2016, A modelling framework for pest population dynamics and management: an application to the grape berry moth, Ecol. Modell., 320, 348, 10.1016/j.ecolmodel.2015.10.018 Gil-Tapetado, 2018, Distribution and dispersal of the invasive Asian chestnut gall wasp, dryocosmus kuriphilus (hymenoptera: cynipidae), across the heterogeneous landscape of the Iberian Peninsula, Eur. J. Entomol., 115, 575, 10.14411/eje.2018.055 Grassi, 2015, Development and efficacy of droskidrink, a food bait for trapping Drosophila suzukii, IOBC/WPRS Bullet., 109, 197 Grimm, 2020, Three questions to ask before using model outputs for decision support, Nat. Commun., 11, 4959, 10.1038/s41467-020-17785-2 Gutierrez, 2012, Prospective analysis of the invasive potential of the European grapevine moth Lobesia botrana (Den. & Schiff.) in California, Agricult. Forest Entomol., 14, 225, 10.1111/j.1461-9563.2011.00566.x Gutierrez, 2016, Analysis of the invasiveness of spotted wing drosophila (drosophila suzukii) in North America, Europe, and the Mediterranean Basin, Biol. Invas., 18, 3647, 10.1007/s10530-016-1255-6 Gutierrez, 2020, Climate warming effects on grape and grapevine moth (Lobesia botrana) in the Palearctic region, Agricult. Forest Entomol. Hanski, 2003, Metapopulation theory for fragmented landscapes, Theor. Popul. Biol., 64, 119, 10.1016/S0040-5809(03)00022-4 Hanski, 1994, A practical model of metapopulation dynamics, J. Animal Ecol., 63, 151, 10.2307/5591 Hanski, 1998, Metapopulation dynamics, Nature, 396, 41, 10.1038/23876 hyeon Byeon, 2018, Review of CLIMEX and MaxEnt for studying species distribution in South Korea, J. Asia-Pac. Biodiv., 11, 325 Jeger, 2004, Epidemiology of insect-transmitted plant viruses: modelling disease dynamics and control interventions, Physiol. Entomol., 29, 291, 10.1111/j.0307-6962.2004.00394.x Jung, 2016, Insect distribution in response to climate change based on a model: review of function and use of CLIMEX, Entomol. Res., 46, 223, 10.1111/1748-5967.12171 Kareiva, 1983, Local movement in herbivorous insects: applying a passive diffusion model to mark-recapture field experiments, Oecologia, 57, 322, 10.1007/BF00377175 Keyfitz, 1997, The McKendrick partial differential equation and its uses in epidemiology and population study, Mathemat. Comput. Modell., 26, 1, 10.1016/S0895-7177(97)00165-9 Knight, 2019, Radio-tracking reveals how wind and temperature influence the pace of daytime insect migration, Biol. Lett., 15, 20190327, 10.1098/rsbl.2019.0327 Kpienbaareh, 2011, Examining the potential of open source remote sensing for building effective decision support systems for precision agriculture in resource-poor settings, GeoJournal Kuparinen, 2006, Mechanistic models for wind dispersal, Trends Plant Sci., 11, 296, 10.1016/j.tplants.2006.04.006 Leduc, 2019, The ClimEx project: a 50-member ensemble of climate change projections at 12-km resolution over europe and northeastern north america with the canadian regional climate model (CRCM5), J. Appl. Meteorol. Climatol., 58, 663, 10.1175/JAMC-D-18-0021.1 Leitch, 2020, The long-distance flight behavior of drosophila suggests a general model for wind-assisted, Disper. Insect., 118 Leslie, 1945, On the use of matrices in certain population mathematics, Biometrika, 33, 183, 10.1093/biomet/33.3.183 Leslie, 1948, Some further notes on the use of matrices in population mathematics, Biometrika, 35, 213, 10.2307/2332342 Li, 2019, Spatial patterns and determinants of the diversity of hemipteran insects in the qinghai-tibetan plateau, Front. Ecol. Evol., 7, 1, 10.3389/fevo.2019.00165 Lippi, 2021, A yolo-based pest detection system for precision agriculture, 342 Ludwig, 1978, Qualitative analysis of insect outbreak systems: The spruce budworm and forest, J. Animal Ecol., 47, 315, 10.2307/3939 Ludwig, 1980, Harvesting strategies for a randomly fluctuating population, ICES J. Marine Sci., 39, 168, 10.1093/icesjms/39.2.168 Mathers, 2019, Sex-specific changes in the aphid DNA methylation landscape, Mol. Ecol., 28, 4228, 10.1111/mec.15216 McKendrick, 1926, Applications of Mathematics to Medical Problems, vol.44, 98 Merow, 2013, A practical guide to MaxEnt for modeling species’ distributions: what it does, and why inputs and settings matter, Ecography, 36, 1058, 10.1111/j.1600-0587.2013.07872.x Metha, 2020, Ecology and phenology of migration in insects, 23 Navarro-Llopis, 2008, Evaluation of traps and lures for mass trapping of Mediterranean fruit fly in citrus groves, J. Econ. Entomol., 101, 126, 10.1093/jee/101.1.126 Nguyen, 2018, Edge-biased distributions of insects., A Rev. Agron. Sustain. Develop., 38, 11, 10.1007/s13593-018-0488-4 Orlandini, 2018, 453 Otero, 2006, A Stochastic Population Dynamics Model for Aedes Aegypti,: Formulation and Application to a City with Temperate Climate, Bull. Math. Biol., 68, 1945, 10.1007/s11538-006-9067-y Ovaskainen, 2018, Frontiers in metapopulation biology: The legacy of Ilkka Hanski, Annu. Rev. Ecol. Evol. Sys., 49, 231, 10.1146/annurev-ecolsys-110617-062519 Phillips, 2004, A maximum entropy approach to species distribution modeling, proceedings, twenty-first international conference on machine learning, ICML, 2004, 655 Phillips, 2006, Modelling and analysis of the atmospheric nitrogen deposition in North Carolina, Int. J. Global Environ. Iss., 6, 231, 10.1504/IJGENVI.2006.010156 Polatto, 2014, Influence of abiotic factors and floral resource availability on daily foraging activity of bees, J. Insect. Behavior, 27, 593, 10.1007/s10905-014-9452-6 Potamitis, 2017, Automated remote insect surveillance at a global scale and the internet of things, Robotics, 6, 19, 10.3390/robotics6030019 Preisler, 1993, Modelling spatial patterns of trees attacked by bark-beetles, Appl. Stat., 42, 501, 10.2307/2986328 Preti, 2021, Insect pest monitoring with camera-equipped traps: strengths and limitations, J. Pest Sci., 94, 203, 10.1007/s10340-020-01309-4 Rassati, 2020, Fungal pathogen and ethanol affect host selection and colonization success in ambrosia beetles, Agricult. Forest Entomol., 22, 1, 10.1111/afe.12351 Rispe, 1999, Extreme life-cycle and sex ratio variation among sexually produced clones of the aphid rhopalosiphum padi (Homoptera: Aphididae), Oikos, 86, 254, 10.2307/3546443 Rossi Stacconi, 2019, Augmentative releases of Trichopria drosophilae for the suppression of early season Drosophila suzukii populations, BioControl, 64, 9, 10.1007/s10526-018-09914-0 Rossini, 2019, Use of ROOT to build a software optimized for parameter estimation and simulations with distributed delay model, Ecol. Inf., 50, 184, 10.1016/j.ecoinf.2019.02.002 Rossini, 2019, A novel modelling approach to describe an insect life cycle vis-à-vis plant protection: description and application in the case study of Tuta absoluta, Ecol. Modell., 409, 108778, 10.1016/j.ecolmodel.2019.108778 Rossini, 2020, EntoSim, a ROOT-based simulator to forecast insects’ life cycle: description and application in the case of, Lobesia Botrana. Crop Protect., 129 Rossini, 2020, Distributed delay model and von foerster's equation: different points of view to describe insects’ life cycles with chronological age and physiological time, Ecol. Inf., 59, 101117, 10.1016/j.ecoinf.2020.101117 Rossini, 2020, Reformulation of the distributed delay model to describe insect pest populations using count variables, Ecol. Modell., 436, 109286, 10.1016/j.ecolmodel.2020.109286 Rossini, 2020, A modelling approach to describe the Anthonomus eugenii (Coleoptera: Curculionidae) life cycle in plant protection: a priori and a posteriori analysis, Flor. Entomol., 103, 259, 10.1653/024.103.0217 Rossini, 2020, A novel version of the Von Foerster equation to describe poikilothermic organisms including physiological age and reproduction rate, Ricer. Di. Matemat., 6 Rossini, 2020, Modelling drosophila suzukii adult male populations: a physiologically based approach with validation, Insects, 11, 751, 10.3390/insects11110751 Rossini, 2021, Life tables and a physiologically based model application to Corcyra cephalonica (Stainton) populations, J. Stor. Prod. Res., 91, 101781, 10.1016/j.jspr.2021.101781 Rossini, 2021, 13066 Rossini, 2021, EntoSim, an insects life cycle simulator enclosing multiple models in a Docker container, Environ. Eng. Manage. J., 20, 1703, 10.30638/eemj.2021.159 Rossini, 2021, A general ODE-based model to describe the physiological age structure of ectotherms: description and application to drosophila suzukii, Ecol. Modell., 456, 109673, 10.1016/j.ecolmodel.2021.109673 Roux, 2011, Spatial patterns and eco-epidemiological systems - part I: multi-scale spatial modelling of the occurrence of Chagas disease insect vectors, Geospat. Health, 6, 41, 10.4081/gh.2011.156 Ryan, 2016, Thermal tolerances of the spotted-wing drosophila drosophila suzukii (Diptera: Drosophilidae), J. Econ. Entomol., 109, 746, 10.1093/jee/tow006 Salom, 1991, Flight behavior of scolytid beetle in response to semiochemicals at different wind speeds, J. Chem. Ecol., 17, 647, 10.1007/BF00982133 Scotter, 1971, An insect dispersal parameter, Ecology, 52, 174, 10.2307/1934751 Sharov, 1996, Modelling forest insect dynamics, 6 Sultson, 2021, Orographic factors as a predictor of the spread of the siberian silk Moth outbreak in the mountainous southern taiga forests of Siberia, Land, 10, 115, 10.3390/land10020115 Tait, 2018, Large-scale spatial dynamics of Drosophila suzukii in Trentino, Italy, J. Pest Sci., 91, 1213, 10.1007/s10340-018-0985-x Takeuchi, 2019, Estimation of dispersal distance of the soybean pod borer leguminivora glycinivorella (Lepidoptera: Tortricidae) by mark-recapture experiments, Appl. Entomol. Zoolog., 54, 285, 10.1007/s13355-019-00625-1 Thistlewood, 2018, Spatial analysis of seasonal dynamics and overwintering of Drosophila suzukii (Diptera: Drosophilidae) in the Okanagan-Columbia Basin 2010-2014, Environ. Entomol., 47, 221, 10.1093/ee/nvx178 Tochen, 2014, Temperature-related development and population parameters for Drosophila suzukii (Diptera: Drosophilidae) on cherry and blueberry, Environ. Entomol., 43, 501, 10.1603/EN13200 Vale, 1983, The effects of odours, wind direction and wind speed on the distribution of Glossina (Diptera: Glossinidae) and other insects near stationary targets, Bull. Entomol. Res., 73, 53, 10.1017/S0007485300013791 Vinatier, 2011, Factors and mechanisms explaining spatial heterogeneity: a review of methods for insect populations, Method Ecol. Evol., 2, 11, 10.1111/j.2041-210X.2010.00059.x Virla, 2003, Estudios bioecológicos sobre la chicharrita del maíz “Dalbulus maidis” (Insecta - Cicadellidae) en Tucumán (Argentina), Boletín de sanidad vegetal. Plagas, 29, 17 Volterra, 1926, 2 Von Foerster, 2010, Some remarks on changing populations, 382 Wang, 2002, Modeling the bathtub shape hazard rate function in terms of reliability, Reliability engineering & system safety, 75, 397, 10.1016/S0951-8320(01)00124-7 Whelan, 2000, The null hypothesis of precision agriculture management, Precision Agricult., 2, 265, 10.1023/A:1011838806489 Wong, 2018, Drosophila suzukii flight performance reduced by starvation but not affected by humidity, J. Pest Sci., 91, 1269, 10.1007/s10340-018-1013-x Young, 2005, 116