Modelling early karstification in future limestone geothermal reservoirs by mixing of meteoric water with cross-formational warm water
Tài liệu tham khảo
Alexander, 2012, Speleogenetic effects of interaction between deeply derived fracture-conduit flow and intrastratal matrix flow in hypogene karst settings, Int. J. Speleol., 41, 35
Andre, 2005, Dissolution of limestone fractures by cooling waters: early development of hypogene karst systems, Water Resour. Res., 41, W011015, 10.1029/2004WR003331
Audra, 2015, Research frontiers in speleogenesis. Dominant processes, hydrogeological conditions and resulting cave patterns, Acta Carsol., 44, 315, 10.3986/ac.v44i3.1960
Bear, 1972
Becker, 2010, An openmi module for the groundwater flow simulation programme feflow, J. Hydroinf., 13, 1, 10.2166/hydro.2010.039
Birk, 2003, Hydraulic boundary conditions as a controlling factor in karst genesis: a numerical modeling study on artesian conduit development in gypsum, Water Resour. Res., 39, SBH2/1, 10.1029/2002WR001308
Boschetti, 2015, Seawater intrusion in the guanahacabibes peninsula (pinar del rio province, Qestern Cuba): effects on karst development and water isotope composition, Environ. Earth Sci., 73, 5703, 10.1007/s12665-014-3825-1
Campana, 2015, Reactive-transport modelling of gypsum dissolution in a coastal karst aquifer in Puglia, southern Italy, Hydrogeol. J., 23, 1, 10.1007/s10040-015-1290-x
Chaudhuri, 2008, Alteration of fractures by precipitation and dissolution in gradient reaction environments: computational results and stochastic analysis, Water Resour. Res., 44, 253, 10.1029/2008WR006982
Chaudhuri, 2013, Early‐stage hypogene karstification in a mountain hydrologic system: a coupled thermohydrochemical model incorporating buoyant convection, Water Resour. Res., 49, 5880, 10.1002/wrcr.20427
Chaudhuri, 2009, Buoyant convection resulting from dissolution and permeability growth in vertical limestone fractures, Geophys. Res. Lett., 36, 441, 10.1029/2008GL036533
Chen, 2011
Corbella, 2006, Reactive transport modeling and hydrothermal karst genesis: the example of the Rocabruna barite deposit (Eastern Pyrenees), Chem. Geol., 233, 113, 10.1016/j.chemgeo.2006.02.022
Domínguez-Villar, 2017, The role of gypsum and/or dolomite dissolution in tufa precipitation: lessons from the hydrochemistry of a carbonate–sulphate karst system, Earth Surf. Process. Landf., 42, 245, 10.1002/esp.3978
Dreybrodt, 1988
Dreybrodt, 2009, Evolution of isolated caves in porous limestone by mixing of phreatic water and surface water at the water table of unconfined aquifers: a model approach, J. Hydrol., 376, 200, 10.1016/j.jhydrol.2009.07.027
Dreybrodt, 2010, Evolution of isolated caves in porous limestone by mixing corrosion: a model approach, Geol. Croat., 63, 129, 10.4154/gc.2010.09
Eross, 2008, The effects of mixed hydrothermal and meteoric fluids on karst reservoir development, 57
Ford, 2007
Gabrovšek, 2010, Karstification in unconfined limestone aquifers by mixing of phreatic water with surface water from a local input: a model, J. Hydrol., 386, 130, 10.1016/j.jhydrol.2010.03.015
Gabrovšek, 2011, Role of mixing corrosion in calcite-aggressive H2O-CO2-CaCO3 solutions in the early evolution of karst aquifers in limestone, Water Resour. Res., 36, 1179, 10.1029/1999WR900337
Gabrovšek, 2000, A model of early evolution of karst conduits affected by subterranean CO2 sources, Environ. Geol., 39, 531, 10.1007/s002540050464
Germanovich, 2000, Stress-dependent permeability and the formation of seafloor event plumes, J. Geophys. Res. Solid Earth, 105, 8341, 10.1029/1999JB900431
Gong, 2018, A numerical model in predicting the initial karst development in porous limestone, Environ. Earth Sci., 77, 295, 10.1007/s12665-018-7458-7
Groves, 1994, Early development of karst systems: 1. Preferential flow path enlargement under laminar flow, Water Resour. Res., 30, 2837, 10.1029/94WR01303
Gulley, 2014, Vadose CO2 gas drives dissolution at water tables in eogenetic karst aquifers more than mixing dissolution, Earth Surf. Process. Landf., 39, 1833, 10.1002/esp.3571
Gulley, 2015, Heterogeneous distributions of CO2 may be more important for dissolution and karstification in coastal eogenetic limestone than mixing dissolution, Earth Surf. Process. Landf., 40, 1057, 10.1002/esp.3705
Hiller, 2012, Karstification beneath the Birs weir in Basel/Switzerland: a 3D modeling approach, J. Hydrol., 448–449, 181, 10.1016/j.jhydrol.2012.04.040
Hose, 2011, Microbiology and geochemistry in a hydrogen-sulphide-rich karst environment, Chem. Geol., 169, 399, 10.1016/S0009-2541(00)00217-5
Howard, 2010, Early development of karst systems: 2. Turbulent flow, Water Resour. Res., 31, 19, 10.1029/94WR01964
Hubinger, 2011, Influence of initial heterogeneities and recharge limitations on the evolution of aperture distributions in carbonate aquifers, Hydrol. Earth Syst. Sci., 15, 3715, 10.5194/hess-15-3715-2011
Jeannin, 2000, . Genesis of a large cave system: case study of the north of lake thun system (Canton Bern, Switzerland), 338
Kaufmann, 2003, Numerical Models for mixing corrosion in natural and artificial karst environments, Water Resour.Res., 39, SBH9/1, 10.1029/2002WR001707
Kaufmann, 2003, A model comparison of karst aquifer evolution for different matrix-flow formulations, J. Hydrol., 283, 281, 10.1016/S0022-1694(03)00270-1
Kaufmann, 1999, Karst aquifer evolution in fractured rocks, Water Resour. Res., 35, 3223, 10.1029/1999WR900169
Kaufmann, 2000, Karst aquifer evolution in fractured, porous rocks, Water Resour. Res., 36, 1381, 10.1029/1999WR900356
Kaufmann, 2007, Calcite dissolution kinetics in the system CaCO3–H2O–CO2 at high undersaturation, Geochim. Cosmochim. Acta, 71, 1398, 10.1016/j.gca.2006.10.024
Kaufmann, 2008, Cave development in the swabian alb, south-west Germany: a numerical perspective, J. Hydrol., 349, 302, 10.1016/j.jhydrol.2007.11.019
Kaufmann, 2014, Deep conduit flow in karst aquifers revisited, Water Resour. Res., 50, 4821, 10.1002/2014WR015314
Klimchouk, 2009, Morphogenesis of hypogenic caves, Geomorphology, 106, 100, 10.1016/j.geomorph.2008.09.013
Klimchouk, 2013, Hypogene speleogenesis, Treatise Geomorphol., 6, 220, 10.1016/B978-0-12-374739-6.00122-6
Koskinen, 1996, Feflow: a finite element code for simulating groundwater flow, heat transfer and solute transport, Trans. Ecol. Environ., 10, 287
Leél-őssy, 2003, Peculiar hydrothermal caves in Budapest, Hungary, Acta Geol. Hung., 46, 407, 10.1556/AGeol.46.2003.4.5
Ma, 2010, Effects of density and viscosity in modeling heat as a groundwater tracer, Ground Water, 48, 380, 10.1111/j.1745-6584.2009.00660.x
Palmer, 2011, Origin and morphology of limestone caves, Geol. Soc. Am. Bull., 103, 1, 10.1130/0016-7606(1991)103<0001:OAMOLC>2.3.CO;2
Palmer, 2000, Hydrochemical interpretation of cave patterns in the Guadalupe Mountains, New Mexico, J. Cave Karst Stud., 62, 91
Pandey, 2017, A coupled thermo-hydro-mechanical modeling of fracture aperture alteration and reservoir deformation during heat extraction from a geothermal reservoir, Geothermics, 65, 17, 10.1016/j.geothermics.2016.08.006
Robertson, 1988, 106
Romanov, 2011, The impact of hydrochemical boundary conditions on the evolution of limestone karst aquifers, J. Hydrol., 276, 240, 10.1016/S0022-1694(03)00058-1
Saar, 2011, Review: geothermal heat as a tracer of large-scale groundwater flow and as a means to determine permeability fields, Hydrogeol. J., 19, 31, 10.1007/s10040-010-0657-2
Sandro, 2012, Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications, Int. J. Speleol., 41, 149, 10.5038/1827-806X.41.2.3
Scanlon, 2003, Can we simulate regional groundwater flow in a karst system using equivalent porous media models? Case study, Barton Springs Edwards aquifer, USA, J. Hydrol., 276, 137, 10.1016/S0022-1694(03)00064-7
Thrailkill, 1968, Chemical and hydrologic factors in the excavation of limestone caves, Geol. Soc. Am. Bull., 79, 19, 10.1130/0016-7606(1968)79[19:CAHFIT]2.0.CO;2
Tóth, 1999, Groundwater as a geologic agent: an overview of the causes, processes, and manifestations, Hydrogeol. J., 7, 1, 10.1007/s100400050176
Trefry, 2007, Feflow: a finite-element ground water flow and transport modeling tool, Ground Water, 45, 525, 10.1111/j.1745-6584.2007.00358.x
White, 2002, Karst hydrology: recent developments and open questions, Eng. Geol., 65, 85, 10.1016/S0013-7952(01)00116-8
Worthington, 2005, Hydraulic and geological factors influencing conduit flow depth, Speleoge. Evol. Karst Aquifers, 3, 123
Worthington, 2011, Depth of conduit flow in unconfined carbonate aquifers, Geology, 29, 335, 10.1130/0091-7613(2001)029<0335:DOCFIU>2.0.CO;2
Worthington, 2000, Porosity and permeability enhancement in unconfined carbonate aquifers as a result of solution, Impl. Speleoge. Stud., 8, 463
Yoshimura, 2001, Geochemical and stable isotope studies on natural water in the Taroko Gorge karst area, Taiwan—chemical weathering of carbonate rocks by deep source CO2 and sulfuric acid, Chem. Geol., 177, 415, 10.1016/S0009-2541(00)00423-X