Modelling early karstification in future limestone geothermal reservoirs by mixing of meteoric water with cross-formational warm water

Geothermics - Tập 77 - Trang 313-326 - 2019
Xing Gong1, Wenjuan Hou1, Deluan Feng1, Qingzi Luo1, Xueqiang Yang1
1School of Civil and Transportation Engineering, Guangdong University of Technology, China

Tài liệu tham khảo

Alexander, 2012, Speleogenetic effects of interaction between deeply derived fracture-conduit flow and intrastratal matrix flow in hypogene karst settings, Int. J. Speleol., 41, 35 Andre, 2005, Dissolution of limestone fractures by cooling waters: early development of hypogene karst systems, Water Resour. Res., 41, W011015, 10.1029/2004WR003331 Audra, 2015, Research frontiers in speleogenesis. Dominant processes, hydrogeological conditions and resulting cave patterns, Acta Carsol., 44, 315, 10.3986/ac.v44i3.1960 Bear, 1972 Becker, 2010, An openmi module for the groundwater flow simulation programme feflow, J. Hydroinf., 13, 1, 10.2166/hydro.2010.039 Birk, 2003, Hydraulic boundary conditions as a controlling factor in karst genesis: a numerical modeling study on artesian conduit development in gypsum, Water Resour. Res., 39, SBH2/1, 10.1029/2002WR001308 Boschetti, 2015, Seawater intrusion in the guanahacabibes peninsula (pinar del rio province, Qestern Cuba): effects on karst development and water isotope composition, Environ. Earth Sci., 73, 5703, 10.1007/s12665-014-3825-1 Campana, 2015, Reactive-transport modelling of gypsum dissolution in a coastal karst aquifer in Puglia, southern Italy, Hydrogeol. J., 23, 1, 10.1007/s10040-015-1290-x Chaudhuri, 2008, Alteration of fractures by precipitation and dissolution in gradient reaction environments: computational results and stochastic analysis, Water Resour. Res., 44, 253, 10.1029/2008WR006982 Chaudhuri, 2013, Early‐stage hypogene karstification in a mountain hydrologic system: a coupled thermohydrochemical model incorporating buoyant convection, Water Resour. Res., 49, 5880, 10.1002/wrcr.20427 Chaudhuri, 2009, Buoyant convection resulting from dissolution and permeability growth in vertical limestone fractures, Geophys. Res. Lett., 36, 441, 10.1029/2008GL036533 Chen, 2011 Corbella, 2006, Reactive transport modeling and hydrothermal karst genesis: the example of the Rocabruna barite deposit (Eastern Pyrenees), Chem. Geol., 233, 113, 10.1016/j.chemgeo.2006.02.022 Domínguez-Villar, 2017, The role of gypsum and/or dolomite dissolution in tufa precipitation: lessons from the hydrochemistry of a carbonate–sulphate karst system, Earth Surf. Process. Landf., 42, 245, 10.1002/esp.3978 Dreybrodt, 1988 Dreybrodt, 2009, Evolution of isolated caves in porous limestone by mixing of phreatic water and surface water at the water table of unconfined aquifers: a model approach, J. Hydrol., 376, 200, 10.1016/j.jhydrol.2009.07.027 Dreybrodt, 2010, Evolution of isolated caves in porous limestone by mixing corrosion: a model approach, Geol. Croat., 63, 129, 10.4154/gc.2010.09 Eross, 2008, The effects of mixed hydrothermal and meteoric fluids on karst reservoir development, 57 Ford, 2007 Gabrovšek, 2010, Karstification in unconfined limestone aquifers by mixing of phreatic water with surface water from a local input: a model, J. Hydrol., 386, 130, 10.1016/j.jhydrol.2010.03.015 Gabrovšek, 2011, Role of mixing corrosion in calcite-aggressive H2O-CO2-CaCO3 solutions in the early evolution of karst aquifers in limestone, Water Resour. Res., 36, 1179, 10.1029/1999WR900337 Gabrovšek, 2000, A model of early evolution of karst conduits affected by subterranean CO2 sources, Environ. Geol., 39, 531, 10.1007/s002540050464 Germanovich, 2000, Stress-dependent permeability and the formation of seafloor event plumes, J. Geophys. Res. Solid Earth, 105, 8341, 10.1029/1999JB900431 Gong, 2018, A numerical model in predicting the initial karst development in porous limestone, Environ. Earth Sci., 77, 295, 10.1007/s12665-018-7458-7 Groves, 1994, Early development of karst systems: 1. Preferential flow path enlargement under laminar flow, Water Resour. Res., 30, 2837, 10.1029/94WR01303 Gulley, 2014, Vadose CO2 gas drives dissolution at water tables in eogenetic karst aquifers more than mixing dissolution, Earth Surf. Process. Landf., 39, 1833, 10.1002/esp.3571 Gulley, 2015, Heterogeneous distributions of CO2 may be more important for dissolution and karstification in coastal eogenetic limestone than mixing dissolution, Earth Surf. Process. Landf., 40, 1057, 10.1002/esp.3705 Hiller, 2012, Karstification beneath the Birs weir in Basel/Switzerland: a 3D modeling approach, J. Hydrol., 448–449, 181, 10.1016/j.jhydrol.2012.04.040 Hose, 2011, Microbiology and geochemistry in a hydrogen-sulphide-rich karst environment, Chem. Geol., 169, 399, 10.1016/S0009-2541(00)00217-5 Howard, 2010, Early development of karst systems: 2. Turbulent flow, Water Resour. Res., 31, 19, 10.1029/94WR01964 Hubinger, 2011, Influence of initial heterogeneities and recharge limitations on the evolution of aperture distributions in carbonate aquifers, Hydrol. Earth Syst. Sci., 15, 3715, 10.5194/hess-15-3715-2011 Jeannin, 2000, . Genesis of a large cave system: case study of the north of lake thun system (Canton Bern, Switzerland), 338 Kaufmann, 2003, Numerical Models for mixing corrosion in natural and artificial karst environments, Water Resour.Res., 39, SBH9/1, 10.1029/2002WR001707 Kaufmann, 2003, A model comparison of karst aquifer evolution for different matrix-flow formulations, J. Hydrol., 283, 281, 10.1016/S0022-1694(03)00270-1 Kaufmann, 1999, Karst aquifer evolution in fractured rocks, Water Resour. Res., 35, 3223, 10.1029/1999WR900169 Kaufmann, 2000, Karst aquifer evolution in fractured, porous rocks, Water Resour. Res., 36, 1381, 10.1029/1999WR900356 Kaufmann, 2007, Calcite dissolution kinetics in the system CaCO3–H2O–CO2 at high undersaturation, Geochim. Cosmochim. Acta, 71, 1398, 10.1016/j.gca.2006.10.024 Kaufmann, 2008, Cave development in the swabian alb, south-west Germany: a numerical perspective, J. Hydrol., 349, 302, 10.1016/j.jhydrol.2007.11.019 Kaufmann, 2014, Deep conduit flow in karst aquifers revisited, Water Resour. Res., 50, 4821, 10.1002/2014WR015314 Klimchouk, 2009, Morphogenesis of hypogenic caves, Geomorphology, 106, 100, 10.1016/j.geomorph.2008.09.013 Klimchouk, 2013, Hypogene speleogenesis, Treatise Geomorphol., 6, 220, 10.1016/B978-0-12-374739-6.00122-6 Koskinen, 1996, Feflow: a finite element code for simulating groundwater flow, heat transfer and solute transport, Trans. Ecol. Environ., 10, 287 Leél-őssy, 2003, Peculiar hydrothermal caves in Budapest, Hungary, Acta Geol. Hung., 46, 407, 10.1556/AGeol.46.2003.4.5 Ma, 2010, Effects of density and viscosity in modeling heat as a groundwater tracer, Ground Water, 48, 380, 10.1111/j.1745-6584.2009.00660.x Palmer, 2011, Origin and morphology of limestone caves, Geol. Soc. Am. Bull., 103, 1, 10.1130/0016-7606(1991)103<0001:OAMOLC>2.3.CO;2 Palmer, 2000, Hydrochemical interpretation of cave patterns in the Guadalupe Mountains, New Mexico, J. Cave Karst Stud., 62, 91 Pandey, 2017, A coupled thermo-hydro-mechanical modeling of fracture aperture alteration and reservoir deformation during heat extraction from a geothermal reservoir, Geothermics, 65, 17, 10.1016/j.geothermics.2016.08.006 Robertson, 1988, 106 Romanov, 2011, The impact of hydrochemical boundary conditions on the evolution of limestone karst aquifers, J. Hydrol., 276, 240, 10.1016/S0022-1694(03)00058-1 Saar, 2011, Review: geothermal heat as a tracer of large-scale groundwater flow and as a means to determine permeability fields, Hydrogeol. J., 19, 31, 10.1007/s10040-010-0657-2 Sandro, 2012, Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications, Int. J. Speleol., 41, 149, 10.5038/1827-806X.41.2.3 Scanlon, 2003, Can we simulate regional groundwater flow in a karst system using equivalent porous media models? Case study, Barton Springs Edwards aquifer, USA, J. Hydrol., 276, 137, 10.1016/S0022-1694(03)00064-7 Thrailkill, 1968, Chemical and hydrologic factors in the excavation of limestone caves, Geol. Soc. Am. Bull., 79, 19, 10.1130/0016-7606(1968)79[19:CAHFIT]2.0.CO;2 Tóth, 1999, Groundwater as a geologic agent: an overview of the causes, processes, and manifestations, Hydrogeol. J., 7, 1, 10.1007/s100400050176 Trefry, 2007, Feflow: a finite-element ground water flow and transport modeling tool, Ground Water, 45, 525, 10.1111/j.1745-6584.2007.00358.x White, 2002, Karst hydrology: recent developments and open questions, Eng. Geol., 65, 85, 10.1016/S0013-7952(01)00116-8 Worthington, 2005, Hydraulic and geological factors influencing conduit flow depth, Speleoge. Evol. Karst Aquifers, 3, 123 Worthington, 2011, Depth of conduit flow in unconfined carbonate aquifers, Geology, 29, 335, 10.1130/0091-7613(2001)029<0335:DOCFIU>2.0.CO;2 Worthington, 2000, Porosity and permeability enhancement in unconfined carbonate aquifers as a result of solution, Impl. Speleoge. Stud., 8, 463 Yoshimura, 2001, Geochemical and stable isotope studies on natural water in the Taroko Gorge karst area, Taiwan—chemical weathering of carbonate rocks by deep source CO2 and sulfuric acid, Chem. Geol., 177, 415, 10.1016/S0009-2541(00)00423-X