Modeling the effect of sensor failure on the location of counting sensors for origin-destination (OD) estimation

Mostafa Salari1, Lina Kattan1, William H.K. Lam2, Mohammad Ansari Esfeh1, Hao Fu2
1Department of Civil and Environmental Engineering, Schulich School of Engineering, University of Calgary, Calgary, Alberta, Canada
2Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China

Tài liệu tham khảo

Aarset, 1987, How to identify a bathtub hazard rate, IEEE Trans. Reliab., R-36, 106, 10.1109/TR.1987.5222310 Bachir, 2019, Inferring dynamic origin-destination flows by transport mode using mobile phone data, Transp. Res. Part C: Emerg. Technol., 101, 254, 10.1016/j.trc.2019.02.013 Balakrishna, 2019, 201 Bell, 1991, The estimation of origin-destination matrices by constrained generalised least squares, Transp. Res. Part B: Methodol., 25, 13, 10.1016/0191-2615(91)90010-G Bianco, 2001, A network based model for traffic sensor location with implications on O/D matrix estimates, Transp. Sci., 35, 50, 10.1287/trsc.35.1.50.10140 Bianco, 2006, Combinatorial aspects of the sensor location problem, Ann. Oper. Res., 144, 201, 10.1007/s10479-006-0016-9 Bierlaire, 2002, The total demand scale: a new measure of quality for static and dynamic origin–destination trip tables, Transp. Res. Part B: Methodol., 36, 837, 10.1016/S0191-2615(01)00036-4 Cantelmo, 2018, A utility-based dynamic demand estimation model that explicitly accounts for activity scheduling and duration, Transp. Res. Part A: Policy Pract., 114, 303 Cantelmo, 2020, A Big Data Demand Estimation Model for Urban Congested Networks, Transp. Telecommun. J., 21, 245 Cao, 2021, Day-to-day dynamic origin–destination flow estimation using connected vehicle trajectories and automatic vehicle identification data, Transp. Res. Part C: Emerg. Technol., 129, 103241, 10.1016/j.trc.2021.103241 Cascetta, 2001, Fixed point approaches to the estimation of O/D matrices using traffic counts on congested networks, Transp. Sci., 35, 134, 10.1287/trsc.35.2.134.10138 Cascetta, 2009 Cascetta, 2013, Quasi-dynamic estimation of o-d flows from traffic counts: Formulation, statistical validation and performance analysis on real data, Transp. Res. Part B: Methodol., 55, 171, 10.1016/j.trb.2013.06.007 Castillo, 2008, The observability problem in traffic network models, Comput.-Aided Civ. Infrastruct. Eng., 23, 208, 10.1111/j.1467-8667.2008.00531.x Castillo, 2013, Observability of traffic networks. Optimal location of counting and scanning devices. Transportmetrica B: Transport, Dynamics, 1, 68 Chen, A., Chootinan, P., Recker, W., Zhang, H. M., 2004. Development of a path flow estimator for deriving steady-state and time-dependent origin-destination trip tables. Cerrone, 2015, Vehicle-id sensor location for route flow recognition: Models and algorithms, Eur. J. Oper. Res., 247, 618, 10.1016/j.ejor.2015.05.070 Chootinan, 2005, A bi-objective traffic counting location problem for origin-destination trip table estimation, Transportmetrica, 1, 65, 10.1080/18128600508685639 Danczyk, 2016, A probabilistic optimization model for allocating freeway sensors, Transp. Res. Part C: Emerg. Technol., 67, 378, 10.1016/j.trc.2016.02.015 de Dios Ortúzar, 2011 Doblas, 2005, An approach to estimating and updating origin–destination matrices based upon traffic counts preserving the prior structure of a survey matrix, Transp. Res. Part B: Methodol., 39, 565, 10.1016/j.trb.2004.06.006 Ehlert, 2006, The optimisation of traffic count locations in road networks, Transp. Res. Part B: Methodol., 40, 460, 10.1016/j.trb.2005.06.001 Eisenman, 2006, Number and location of sensors for real-time network traffic estimation and prediction: Sensitivity analysis, Transp. Res. Rec., 1964, 253, 10.1177/0361198106196400128 Florian, 2008, Models and software for urban and regional transportation planning: the contributions of the center for research on transportation, INFOR: Inform. Syst. Operat. Res., 46, 29 Fu, 2016, Heterogeneous sensor location model for path reconstruction, Transp. Res. Part B: Methodol., 91, 77, 10.1016/j.trb.2016.04.013 Fu, 2019, Optimization of traffic count locations for estimation of travel demands with covariance between origin-destination flows, Transp. Res. Part C: Emerg. Technol., 108, 49, 10.1016/j.trc.2019.09.004 Fukushima, 1984, A modified Frank-Wolfe algorithm for solving the traffic assignment problem, Transp. Res. Part B: Methodol., 18, 169, 10.1016/0191-2615(84)90029-8 Gan, 2005, Traffic counting location and error bound in origin-destination matrix estimation problems, J. Transp. Eng., 131, 524, 10.1061/(ASCE)0733-947X(2005)131:7(524) Ge, 2016, Updating origin–destination matrices with aggregated data of GPS traces, Transp. Res. Part C: Emerg. Technol., 69, 291, 10.1016/j.trc.2016.06.002 Gentili, 2005, Locating active sensors on traffic networks, Ann. Oper. Res., 136, 229, 10.1007/s10479-005-2047-z Gentili, 2012, Locating sensors on traffic networks: Models, challenges and research opportunities, Transp. Res. Part C: Emerg. Technol., 24, 227, 10.1016/j.trc.2012.01.004 Hadavi, 2016, Vehicle identification sensor models for origin–destination estimation, Transp. Res. Part B: Methodol., 89, 82, 10.1016/j.trb.2016.03.011 Hadavi, 2019, Vehicle identification sensors location problem for large networks, J. Intell. Transp. Syst., 23, 389, 10.1080/15472450.2018.1506339 Hazelton, 2000, Estimation of origin–destination matrices from link flows on uncongested networks, Transp. Res. Part B: Methodol., 34, 549, 10.1016/S0191-2615(99)00037-5 Hazelton, 2003, Some comments on origin–destination matrix estimation, Transp. Res. Part A: Policy Pract., 37, 811 Hu, 2009, Identification of vehicle sensor locations for link-based network traffic applications, Transp. Res. Part B: Methodol., 43, 873, 10.1016/j.trb.2009.02.008 Hu, 2014, A generalized sensor location model for the estimation of network origin–destination matrices, Transp. Res. Part C: Emerg. Technol., 40, 93, 10.1016/j.trc.2014.01.004 Oh, 2002, Emergence of private advanced traveler information system providers and their effect on traffic network performance, Transp. Res. Rec., 1783, 167, 10.3141/1783-21 Kattan, 2012, Sensitivity Analysis of an Evolutionary based Time Dependent Origin/Destination Estimation Framework, IEEE Trans. Intell. Transp. Syst., 13, 1442, 10.1109/TITS.2012.2189437 Kingman, 2005, Poisson processes, Encyclopedia of biostatistics, 6 Lo, 1999, Decomposition algorithm for statistical estimation of OD matrix with random link choice proportions from traffic counts, Transp. Res. Part B: Methodol., 33, 369, 10.1016/S0191-2615(98)00042-3 Lu, 2015, An enhanced SPSA algorithm for the calibration of Dynamic Traffic Assignment models, Transp. Res. Part C: Emerg. Technol., 51, 149, 10.1016/j.trc.2014.11.006 Meyer, M.D., Miller, E.J., 1984. Urban transportation planning: a decision-oriented approach. Mínguez, 2010, Optimal traffic plate scanning location for OD trip matrix and route estimation in road networks, Transp. Res. Part B: Methodol., 44, 282, 10.1016/j.trb.2009.07.008 Ng, 2012, Synergistic sensor location for link flow inference without path enumeration: A node-based approach, Transp. Res. Part B: Methodol., 46, 781, 10.1016/j.trb.2012.02.001 Ng, 2013, Partial link flow observability in the presence of initial sensors: Solution without path enumeration, Transp. Res. Part E: Logistics and Transportation Review, 51, 62, 10.1016/j.tre.2012.12.002 Nigro, 2018, Exploiting floating car data for time-dependent origin–destination matrices estimation, J. Intell. Transp. Syst., 22, 159, 10.1080/15472450.2017.1421462 Osorio, 2019, Dynamic origin-destination matrix calibration for large-scale network simulators, Transp. Res. Part C: Emerg. Technol., 98, 186, 10.1016/j.trc.2018.09.023 Owais, 2019, Sensor location model for O/D estimation: Multi-criteria meta-heuristics approach, Oper. Res. Perspect., 6, 100100 Qurashi, 2020, PC–SPSA: employing dimensionality reduction to limit SPSA search noise in DTA model calibration, IEEE Trans. Intell. Transp. Syst., 21, 1635, 10.1109/TITS.2019.2915273 Rubin, 2021, An exact method for locating counting sensors in flow observability problems, Transp. Res. Part C: Emerg. Technol., 123, 102855, 10.1016/j.trc.2020.102855 Salari, 2019, Optimization of traffic sensor location for complete link flow observability in traffic network considering sensor failure, Transp. Res. Part B: Methodol., 121, 216, 10.1016/j.trb.2019.01.004 Van Zuylen, 1980, The most likely trip matrix estimated from traffic counts, Transp. Res. Part B: Methodol., 14, 281, 10.1016/0191-2615(80)90008-9 Viti, 2014, Assessing partial observability in network sensor location problems, Transp. Res. Part B: Methodol., 70, 65, 10.1016/j.trb.2014.08.002 Xu, 2016, Robust network sensor location for complete link flow observability under uncertainty, Transp. Res. Part B: Methodol., 88, 1, 10.1016/j.trb.2016.03.006 Yang, 1991, An analysis of the reliability of an origin-destination trip matrix estimated from traffic counts, Transp. Res. Part B: Methodol., 25, 351, 10.1016/0191-2615(91)90028-H Yang, 1998, Optimal traffic counting locations for origin–destination matrix estimation, Transp. Res. Part B: Methodol., 32, 109, 10.1016/S0191-2615(97)00016-7 Yang, 2006, Models and algorithms for the screen line-based traffic-counting location problems, Comput. Oper. Res., 33, 836, 10.1016/j.cor.2004.08.011 Yen, 1970, An algorithm for finding shortest routes from all source nodes to a given destination in general networks, Q. Appl. Math., 27, 526, 10.1090/qam/253822 Zhang, 2021, Improving the accuracy and efficiency of online calibration for simulation-based Dynamic Traffic Assignment, Transp. Res. Part C: Emerg. Technol., 128, 103195, 10.1016/j.trc.2021.103195 Zhou, 2010, An information-theoretic sensor location model for traffic origin-destination demand estimation applications, Transp. Sci., 44, 254, 10.1287/trsc.1100.0319 Zhu, 2017, Travel time estimation-oriented freeway sensor placement problem considering sensor failure, J. Intell. Transp. Syst., 21, 26, 10.1080/15472450.2016.1194206