Modeling the effect of sensor failure on the location of counting sensors for origin-destination (OD) estimation
Tài liệu tham khảo
Aarset, 1987, How to identify a bathtub hazard rate, IEEE Trans. Reliab., R-36, 106, 10.1109/TR.1987.5222310
Bachir, 2019, Inferring dynamic origin-destination flows by transport mode using mobile phone data, Transp. Res. Part C: Emerg. Technol., 101, 254, 10.1016/j.trc.2019.02.013
Balakrishna, 2019, 201
Bell, 1991, The estimation of origin-destination matrices by constrained generalised least squares, Transp. Res. Part B: Methodol., 25, 13, 10.1016/0191-2615(91)90010-G
Bianco, 2001, A network based model for traffic sensor location with implications on O/D matrix estimates, Transp. Sci., 35, 50, 10.1287/trsc.35.1.50.10140
Bianco, 2006, Combinatorial aspects of the sensor location problem, Ann. Oper. Res., 144, 201, 10.1007/s10479-006-0016-9
Bierlaire, 2002, The total demand scale: a new measure of quality for static and dynamic origin–destination trip tables, Transp. Res. Part B: Methodol., 36, 837, 10.1016/S0191-2615(01)00036-4
Cantelmo, 2018, A utility-based dynamic demand estimation model that explicitly accounts for activity scheduling and duration, Transp. Res. Part A: Policy Pract., 114, 303
Cantelmo, 2020, A Big Data Demand Estimation Model for Urban Congested Networks, Transp. Telecommun. J., 21, 245
Cao, 2021, Day-to-day dynamic origin–destination flow estimation using connected vehicle trajectories and automatic vehicle identification data, Transp. Res. Part C: Emerg. Technol., 129, 103241, 10.1016/j.trc.2021.103241
Cascetta, 2001, Fixed point approaches to the estimation of O/D matrices using traffic counts on congested networks, Transp. Sci., 35, 134, 10.1287/trsc.35.2.134.10138
Cascetta, 2009
Cascetta, 2013, Quasi-dynamic estimation of o-d flows from traffic counts: Formulation, statistical validation and performance analysis on real data, Transp. Res. Part B: Methodol., 55, 171, 10.1016/j.trb.2013.06.007
Castillo, 2008, The observability problem in traffic network models, Comput.-Aided Civ. Infrastruct. Eng., 23, 208, 10.1111/j.1467-8667.2008.00531.x
Castillo, 2013, Observability of traffic networks. Optimal location of counting and scanning devices. Transportmetrica B: Transport, Dynamics, 1, 68
Chen, A., Chootinan, P., Recker, W., Zhang, H. M., 2004. Development of a path flow estimator for deriving steady-state and time-dependent origin-destination trip tables.
Cerrone, 2015, Vehicle-id sensor location for route flow recognition: Models and algorithms, Eur. J. Oper. Res., 247, 618, 10.1016/j.ejor.2015.05.070
Chootinan, 2005, A bi-objective traffic counting location problem for origin-destination trip table estimation, Transportmetrica, 1, 65, 10.1080/18128600508685639
Danczyk, 2016, A probabilistic optimization model for allocating freeway sensors, Transp. Res. Part C: Emerg. Technol., 67, 378, 10.1016/j.trc.2016.02.015
de Dios Ortúzar, 2011
Doblas, 2005, An approach to estimating and updating origin–destination matrices based upon traffic counts preserving the prior structure of a survey matrix, Transp. Res. Part B: Methodol., 39, 565, 10.1016/j.trb.2004.06.006
Ehlert, 2006, The optimisation of traffic count locations in road networks, Transp. Res. Part B: Methodol., 40, 460, 10.1016/j.trb.2005.06.001
Eisenman, 2006, Number and location of sensors for real-time network traffic estimation and prediction: Sensitivity analysis, Transp. Res. Rec., 1964, 253, 10.1177/0361198106196400128
Florian, 2008, Models and software for urban and regional transportation planning: the contributions of the center for research on transportation, INFOR: Inform. Syst. Operat. Res., 46, 29
Fu, 2016, Heterogeneous sensor location model for path reconstruction, Transp. Res. Part B: Methodol., 91, 77, 10.1016/j.trb.2016.04.013
Fu, 2019, Optimization of traffic count locations for estimation of travel demands with covariance between origin-destination flows, Transp. Res. Part C: Emerg. Technol., 108, 49, 10.1016/j.trc.2019.09.004
Fukushima, 1984, A modified Frank-Wolfe algorithm for solving the traffic assignment problem, Transp. Res. Part B: Methodol., 18, 169, 10.1016/0191-2615(84)90029-8
Gan, 2005, Traffic counting location and error bound in origin-destination matrix estimation problems, J. Transp. Eng., 131, 524, 10.1061/(ASCE)0733-947X(2005)131:7(524)
Ge, 2016, Updating origin–destination matrices with aggregated data of GPS traces, Transp. Res. Part C: Emerg. Technol., 69, 291, 10.1016/j.trc.2016.06.002
Gentili, 2005, Locating active sensors on traffic networks, Ann. Oper. Res., 136, 229, 10.1007/s10479-005-2047-z
Gentili, 2012, Locating sensors on traffic networks: Models, challenges and research opportunities, Transp. Res. Part C: Emerg. Technol., 24, 227, 10.1016/j.trc.2012.01.004
Hadavi, 2016, Vehicle identification sensor models for origin–destination estimation, Transp. Res. Part B: Methodol., 89, 82, 10.1016/j.trb.2016.03.011
Hadavi, 2019, Vehicle identification sensors location problem for large networks, J. Intell. Transp. Syst., 23, 389, 10.1080/15472450.2018.1506339
Hazelton, 2000, Estimation of origin–destination matrices from link flows on uncongested networks, Transp. Res. Part B: Methodol., 34, 549, 10.1016/S0191-2615(99)00037-5
Hazelton, 2003, Some comments on origin–destination matrix estimation, Transp. Res. Part A: Policy Pract., 37, 811
Hu, 2009, Identification of vehicle sensor locations for link-based network traffic applications, Transp. Res. Part B: Methodol., 43, 873, 10.1016/j.trb.2009.02.008
Hu, 2014, A generalized sensor location model for the estimation of network origin–destination matrices, Transp. Res. Part C: Emerg. Technol., 40, 93, 10.1016/j.trc.2014.01.004
Oh, 2002, Emergence of private advanced traveler information system providers and their effect on traffic network performance, Transp. Res. Rec., 1783, 167, 10.3141/1783-21
Kattan, 2012, Sensitivity Analysis of an Evolutionary based Time Dependent Origin/Destination Estimation Framework, IEEE Trans. Intell. Transp. Syst., 13, 1442, 10.1109/TITS.2012.2189437
Kingman, 2005, Poisson processes, Encyclopedia of biostatistics, 6
Lo, 1999, Decomposition algorithm for statistical estimation of OD matrix with random link choice proportions from traffic counts, Transp. Res. Part B: Methodol., 33, 369, 10.1016/S0191-2615(98)00042-3
Lu, 2015, An enhanced SPSA algorithm for the calibration of Dynamic Traffic Assignment models, Transp. Res. Part C: Emerg. Technol., 51, 149, 10.1016/j.trc.2014.11.006
Meyer, M.D., Miller, E.J., 1984. Urban transportation planning: a decision-oriented approach.
Mínguez, 2010, Optimal traffic plate scanning location for OD trip matrix and route estimation in road networks, Transp. Res. Part B: Methodol., 44, 282, 10.1016/j.trb.2009.07.008
Ng, 2012, Synergistic sensor location for link flow inference without path enumeration: A node-based approach, Transp. Res. Part B: Methodol., 46, 781, 10.1016/j.trb.2012.02.001
Ng, 2013, Partial link flow observability in the presence of initial sensors: Solution without path enumeration, Transp. Res. Part E: Logistics and Transportation Review, 51, 62, 10.1016/j.tre.2012.12.002
Nigro, 2018, Exploiting floating car data for time-dependent origin–destination matrices estimation, J. Intell. Transp. Syst., 22, 159, 10.1080/15472450.2017.1421462
Osorio, 2019, Dynamic origin-destination matrix calibration for large-scale network simulators, Transp. Res. Part C: Emerg. Technol., 98, 186, 10.1016/j.trc.2018.09.023
Owais, 2019, Sensor location model for O/D estimation: Multi-criteria meta-heuristics approach, Oper. Res. Perspect., 6, 100100
Qurashi, 2020, PC–SPSA: employing dimensionality reduction to limit SPSA search noise in DTA model calibration, IEEE Trans. Intell. Transp. Syst., 21, 1635, 10.1109/TITS.2019.2915273
Rubin, 2021, An exact method for locating counting sensors in flow observability problems, Transp. Res. Part C: Emerg. Technol., 123, 102855, 10.1016/j.trc.2020.102855
Salari, 2019, Optimization of traffic sensor location for complete link flow observability in traffic network considering sensor failure, Transp. Res. Part B: Methodol., 121, 216, 10.1016/j.trb.2019.01.004
Van Zuylen, 1980, The most likely trip matrix estimated from traffic counts, Transp. Res. Part B: Methodol., 14, 281, 10.1016/0191-2615(80)90008-9
Viti, 2014, Assessing partial observability in network sensor location problems, Transp. Res. Part B: Methodol., 70, 65, 10.1016/j.trb.2014.08.002
Xu, 2016, Robust network sensor location for complete link flow observability under uncertainty, Transp. Res. Part B: Methodol., 88, 1, 10.1016/j.trb.2016.03.006
Yang, 1991, An analysis of the reliability of an origin-destination trip matrix estimated from traffic counts, Transp. Res. Part B: Methodol., 25, 351, 10.1016/0191-2615(91)90028-H
Yang, 1998, Optimal traffic counting locations for origin–destination matrix estimation, Transp. Res. Part B: Methodol., 32, 109, 10.1016/S0191-2615(97)00016-7
Yang, 2006, Models and algorithms for the screen line-based traffic-counting location problems, Comput. Oper. Res., 33, 836, 10.1016/j.cor.2004.08.011
Yen, 1970, An algorithm for finding shortest routes from all source nodes to a given destination in general networks, Q. Appl. Math., 27, 526, 10.1090/qam/253822
Zhang, 2021, Improving the accuracy and efficiency of online calibration for simulation-based Dynamic Traffic Assignment, Transp. Res. Part C: Emerg. Technol., 128, 103195, 10.1016/j.trc.2021.103195
Zhou, 2010, An information-theoretic sensor location model for traffic origin-destination demand estimation applications, Transp. Sci., 44, 254, 10.1287/trsc.1100.0319
Zhu, 2017, Travel time estimation-oriented freeway sensor placement problem considering sensor failure, J. Intell. Transp. Syst., 21, 26, 10.1080/15472450.2016.1194206