Modeling spatial variation of explanatory factors of urban expansion of Kolkata: a geographically weighted regression approach
Tóm tắt
Từ khóa
Tài liệu tham khảo
Aljoufie M, Brussel M, Zuidgeest M, Van Maarseveen M (2013) Urban growth and transport infrastructure interaction in Jeddah between 1980 and 2007. Int J Appl Earth Obs Geoinf 21:493–505
Anselin L, Syabri I, Kho Y (2006) GeoDa: an introduction to spatial data analysis. Geogr Anal 38(1):5–22
Anthopoulos LG, Vakali A (2012) Urban planning and smart cities: interrelations and reciprocities urban planning: principles and dimensions. The future internet: lecture notes in computer science, pp 178–189
Bagchi A (1987) Planning for metropolitan development: Calcutta’s basic development plan, 1966–1986: a post-mortem. Econ Polit Weekly 22(14):597–601. Retrieved from http://www.jstor.org.ezp-prod1.hul.harvard.edu/stable/pdfplus/4376875.pdf?acceptTC=true
Bagheri N, Holt A, Benwell GL (2009) Using geographically weighted regression to validate approaches for modelling accessibility to primary health care. Appl Spat Anal Policy 2(3):177–194
Batty M, Xie Y, Sun Z (1999) Modelling urban dynamics through GIS-based cellular automata. Comput Environ Urban Syst 23(3):205–233
Bhagat RB (2004) Dynamics of urban population growth by size class of towns and cities in India. Demogr India 33(1):47
Bhatta B (2009) Analysis of urban growth pattern using remote sensing and GIS: a case study of Kolkata, India. Int J Remote Sens (May 2014), 37–41. doi: 10.1080/01431160802651967
Bitter C, Mulligan GF, Dall’erba S (2007) Incorporating spatial variation in housing attribute prices: a comparison of geographically weighted regression and the spatial expansion method. J Geogr Syst 9:7–27. doi: 10.1007/s10109-006-0028-7
Brown S, Versace VL, Laurenson L, Ierodiaconou D, Fawcett J, Salzman S (2012) Assessment of spatiotemporal varying relationships between rainfall, land cover and surface water area using geographically weighted regression. Environ Model Assess 17:241–254. doi: 10.1007/s10666-011-9289-8
Chen J, Chang K, Karacsonyi D, Zhang X (2014) Comparing urban land expansion and its driving factors in Shenzhen and Dongguan, China. Habitat Int 43:61–71. doi: 10.1016/j.habitatint.2014.01.004
Clement F, Orange D, Williams M, Mulley C, Epprecht M (2009) Drivers of afforestation in Northern Vietnam: assessing local variations using geographically weighted regression. Appl Geogr 29:561–576. doi: 10.1016/j.apgeog.2009.01.003
Du S, Wang Q, Guo L (2014) Spatially varying relationships between land-cover change and driving factors at multiple sampling scales. J Environ Manag 137:101–110
Floridi M, Pagni S, Falorni S, Luzzati T (2011) An exercise in composite indicators construction: assessing the sustainability of Italian regions. Ecol Econ 70(8):1440–1447
Fotheringham AS, Charlton M, Brunsdon C (1998) Geographically weighted regression: a natural evolution of the expansion method for spatial data analysis. Plan Environ C 30:1905–1927
Fotheringham AS, Crespo R, Yao J (2015) Geographical and temporal weighted regression (GTWR). Geogr Anal. doi: 10.1111/gean.12071
Haase D, Haase A, Kabisch N, Kabisch S, Rink D (2012) Actors and factors in land-use simulation: the challenge of urban shrinkage. Environ Model Softw 35(7):92–103. doi: 10.1016/j.envsoft.2012.02.012
Haitao Z, Long GUO, Jiaying C, Peihong FU, Jianli GU, Guangyu L (2014) Modeling of spatial distributions of farmland density and its temporal change using geographically weighted regression model. Chin Geogr Sci 24(2):191–204. doi: 10.1007/s11769-013-0631-8
Huang Y, Leung Y (2002) Analysing regional industrialisation in Jiangsu province using geographically weighted regression. J Geogr Syst 4(2):233–249
Huang B, Wu B, Barry M (2010) Geographically and temporally weighted regression for modeling spatio-temporal variation in house prices. Int J Geogr Inf Sci 24(3):383–401. doi: 10.1080/13658810802672469
Kaligari M, Ziberna I (2014) Geographically weighted regression of the urban heat island of a small city. Appl Geogr 53:341–353
Lee KH, Schuett MA (2014) Exploring spatial variations in the relationships between residents’ recreation demand and associated factors: a case study in Texas. Appl Geogr 53:213–222
Li X, Zhou W, Ouyang Z (2013) Forty years of urban expansion in Beijing: what is the relative importance of physical, socioeconomic, and neighborhood factors? Appl Geogr 38:1–10. doi: 10.1016/j.apgeog.2012.11.004
Long H, Tang G, Li X, Heilig GK (2007) Socio-economic driving forces of land-use change in Kunshan, the Yangtze River Delta economic area of China. J Environ Manag 83(3):351–364
Lu C, Wu Y, Shen Q, Wang H (2013) Driving force of urban growth and regional planning : a case study of China’ s Guangdong Province. Habitat Int 40:35–41. doi: 10.1016/j.habitatint.2013.01.006
Lu B, Charlton M, Harris P, Stewart A (2014) Geographically weighted regression with a non-Euclidean distance metric: a case study using hedonic house price data. Int J Geogr Inf Sci 28(4):660–681. doi: 10.1080/13658816.2013.865739
Luo J, Wei YHD (2009) Modeling spatial variations of urban growth patterns in Chinese cities: the case of Nanjing. Landsc Urban Plan 91(2):51–64. doi: 10.1016/j.landurbplan.2008.11.010
Megler V, Banis D, Chang H (2014) Spatial analysis of graffiti in San Francisco. Appl Geogr 54:63–73
Mondal B (2014) Modeling urban development potential surface by integrating cellular automata and Markov chain: a study on Kolkata and its surroundings. Jawaharlal Nehru University, New Delhi, India. Dissertation
Mesev V (1997) Remote sensing of urban systems: hierarchical integration with GIS. Comput Environ Urban Syst 21(3):175–187
Nakaya T (2009) GWR4 User Manual
Pal A (2006) Scope for bottom-up planning in Kolkata: rhetoric vs reality. Environ Urban 18(2):501–521. doi: 10.1177/0956247806069628
Parker DC, Manson SM, Janssen MA, Hoffmann MJ, Deadman P (2003) Multi-agent systems for the simulation of land-use and land-cover change: a review. Ann Assoc Am Geogr 93(2):314–337. doi: 10.1111/1467-8306.9302004
Perz SG, Aramburú C, Bremner J (2005) Population, land use and deforestation in the Pan Amazon Basin: a comparison of Brazil, Bolivia, Colombia, Ecuador, Perú and Venezuela. Environ Dev Sustain 7(1):23–49
Polèse M, Denis-Jacob J (2010) Changes at the top: a cross-country examination over the 20th century of the rise (and fall) in rank of the top cities in national urban hierarchies. Urban Stud 47(9):1843–1860
Roy AUK (2005) Development of new townships: a catalyst in the growth of rural fringes of Kolkata Metropolitan Area (KMA), 1–7. Retrieved from http://www.atiwb.gov.in/U2.pdf
Roy A (2011) Re-forming the megacity: calcutta and the rural–urban interface. Megacities: library for sustainable urban regeneration 10(1):93–109. doi: 10.1007/978-4-431-99267-7_5
Sengupta U (2006) Government intervention and public–private partnerships in housing delivery in Kolkata. Habitat Int 30(3):448–461. doi: 10.1016/j.habitatint.2004.12.002
Sengupta U (2007) Housing reform in Kolkata: changes and challenges. Hous Stud 22(6):965–979. doi: 10.1080/02673030701608217
Shafizadeh Moghadam H, Helbich M (2013) Spatiotemporal urbanization processes in the megacity of Mumbai, India: a Markov chains-cellular automata urban growth model. Appl Geogr 40(6):140–149. doi: 10.1016/j.apgeog.2013.01.009
Shafizadeh-Moghadam H, Helbich H (2015) Spatiotemporal variability of urban growth factors: a globaland local perspective on the megacity of Mumbai. Int J Appl Earth Obs Geoinf 35:187–198
Shaw A, Satish MK (2007) Metropolitan restructuring in post-liberalized India: separating the global and the. Cities 24(2):148–163. doi: 10.1016/j.cities.2006.02.001
Sivaramakrishnan KC, Kundu A, Singh BN (2005) Handbook of urbanization in India: an analysis of trends and processes. Oxford University Press, Oxford
Thapa RB, Estoque RC (2012) Geographically weighted regression in geospatial analysis. In: Murayama Y (ed) Progress in geospatial analysis. Springer, Japan, pp 85–96
Todes A (2012) Urban growth and strategic spatial planning in Johannesburg, South Africa. Cities 29(3):158–165. doi: 10.1016/j.cities.2011.08.004
Weng Q (2010) Remote sensing and GIS integration: theories, methods, and applications. McGraw-Hill, New York, p 416
Zhou P, Ang BW, Poh KL (2005) Comparing aggregating methods for constructing the composite environmental index: an objective measure. Ecol Econ 9:305–311