Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Mô hình hóa việc mua ô tô mới: phân tích thị trường Pháp năm 2014
Tóm tắt
Bài báo này phân tích và so sánh các kịch bản chính sách khác nhau cũng như thảo luận về độ co giãn giá cả và khả năng chi trả và chấp nhận giá sử dụng dữ liệu tiết lộ ưu tiên (RP) từ thị trường ô tô mới của Pháp năm 2014 thông qua mô hình logit chéo (CNL). Chúng tôi tập trung đặc biệt vào các phương tiện điện và xe hybrid. Chúng tôi sử dụng các tương tác giữa chi phí (cả chi phí cố định và chi phí hoạt động) và thu nhập hộ gia đình để phân tích độ nhạy đối với các kịch bản chính sách khác nhau theo mức thu nhập. Kết quả cho thấy khả năng chi trả và chấp nhận mà chúng tôi thu được trong nghiên cứu là nhất quán với điều kiện thị trường thực tế. Chúng tôi cũng phát hiện rằng kịch bản hiệu quả nhất để tăng thị phần của các phương tiện điện mới bán ra là sự tiến bộ công nghệ lớn, chẳng hạn như giảm giá do chi phí sản xuất thấp hơn và tăng phạm vi di chuyển, thay vì một kịch bản dựa trên chính sách. Ngoài ra, phân khúc thị trường có tiềm năng lớn nhất để tăng thị phần của việc mua xe điện là nhóm thu nhập trung bình. Trong bài báo, chúng tôi thảo luận về cách vượt qua những khó khăn trong việc làm việc với dữ liệu tiết lộ ưu tiên, và đề xuất nhiều phương pháp bổ sung để ước lượng các thuộc tính của các lựa chọn không được chọn, dựa trên các phân bố thực nghiệm của chúng.
Từ khóa
#ô tô mới #xe điện #xe hybrid #thị trường Pháp #dữ liệu tiết lộ ưu tiên #mô hình logit chéo #chính sách #chi phí #thu nhập hộ gia đình #khả năng chi trả #công nghệ.Tài liệu tham khảo
Abbe, E., Bierlaire, M., & Toledo, T. (2007). Normalization and correlation of cross-nested logit models. Transportation Research Part B: Methodological, 41(7), 795–808.
Adda, J., & Cooper, R. (2000). Balladurette and Juppette: A discrete analysis of scrapping subsidies. Journal of Political Economy, 108(4), 778–806.
Adepetu, A., & Keshav, S. (2017). The relative importance of price and driving range on electric vehicle adoption: Los Angeles case study. Transportation, 44(2), 353–373.
Anowar, S., Eluru, N., & Miranda-Moreno, L. F. (2014). Alternative modeling approaches used for examining automobile ownership: a comprehensive review. Transport Reviews, 34(4), 441–473.
Autobild. (2017). Audi RS3 Sportback. http://www.autobild.es/coches/audi/a3/rs3-sportback-5-2015. Accessed on 12.06.2017.
Beck, M. J., Rose, J. M., & Hensher, D. A. (2013). Environmental attitudes and emissions charging: An example of policy implications for vehicle choice. Transportation Research Part A: Policy and Practice, 50, 171–182.
Beck, M.J., Rose, J.M., & Greaves, S.P. (2017). I can’t believe your attitude: a joint estimation of best worst attitudes and electric vehicle choice. Transportation, 44(4), 753–772.
Berkovec, J. (1985). Forecasting automobile demand using disaggregate choice models. Transportation Research Part B: Methodological, 19(4), 315–329.
Berkovec, J., & Rust, J. (1985). A nested logit model of automobile holdings for one vehicle households. Transportation Research Part B: Methodological, 19(4), 275–285.
Berry, S., Levinsohn, J., & Pakes, A. (1995). Automobile prices in market equilibrium. Econometrica, 63(4), 841.
Berry, S., Levinsohn, J., & Pakes, A. (1998 Mar). Differentiated products demand systems from a combination of micro and macro data: The new car market. Tech. rept. w6481. National Bureau of Economic Research, Cambridge, MA.
Bierlaire, M. (2006). A theoretical analysis of the cross-nested logit model. Annals of Operations Research, 144(1), 287–300.
Birkeland, M.E., & Jordal-Jorgensen, J. (2001). Energy efficiency of passenger cars. https://trid.trb.org/Results?txtKeywords=birkeland&txtTitle=&txtSerial=%22PROCEEDINGS%20OF%20THE%20AET%20EUROPEAN%20TRANSPORT%20CONFERENCE%2C%20HELD%2010-12%20SEPTEMBER%2C%202001%2C%20HOMERTON%20COLLEGE%2C%20CAMBRIDGE%2C%20UK%20-%20CD-ROM%22&ddlSubject=&txtReportNum=&ddlTrisfile=&txtIndex=%20&specificTerms=&txtAgency=&txtAuthor=&ddlResultType=&chkFulltextOnly=0&language=1%2C2%2C4%2C8&subjectLogic=or&dateStart=&dateEnd=&rangeType=publisheddate&sortBy=&sortOrder=DESC&rpp=25#/View/728912. Accessed 10 October 2017.
Brownstone, D., & Train, K. (1998). Forecasting new product penetration with flexible substitution patterns. Journal of Econometrics, 89(1–2), 109–129.
Cao, X., Mokhtarian, P. L., & Handy, S. L. (2006). Neighborhood design and vehicle type choice: Evidence from Northern California. Transportation Research Part D: Transport and Environment, 11(2), 133–145.
Cernicchiaro, G., & de Lapparent, M. (2015). A dynamic discrete/continuous choice model for forward-looking agents owning one or more vehicles. Computational Economics, 46(1), 15–34.
Choo, S., & Mokhtarian, P. L. (2004). What type of vehicle do people drive? The role of attitude and lifestyle in influencing vehicle type choice. Transportation Research Part A: Policy and Practice, 38(3), 201–222.
Comité des Constructeurs Français d’Automobiles. (2016). SOeS. MEDDE: ASFA, Kantar Worldpanel; TNS; Setra; CPDP.
Daziano, R. A. (2013). Conditional-logit Bayes estimators for consumer valuation of electric vehicle driving range. Resource and Energy Economics, 35(3), 429–450.
Daziano, R. A., & Achtnicht, M. (2014). Forecasting adoption of ultra-low-emission vehicles using bayes estimates of a multinomial probit model and the GHK simulator. Transportation Science, 48(4), 671–683.
de Jong, G., Fox, J., Daly, A., Pieters, M., & Smit, R. (2004). Comparison of car ownership models. Transport Reviews, 24(4), 379–408.
de Lapparent, M., & Cernicchiaro, G. (2012). How long to own and how much to use a car? A dynamic discrete choice model to explain holding duration and driven mileage. Economic Modelling, 29(5), 1737–1744.
de Palma, A., & Kilani, M. (2008). Regulation in the automobile industry. International Journal of Industrial Organization, 26(1), 150–167.
Dimitropoulos, A., Rietveld, P., & van Ommeren, J. (2013). Consumer valuation of changes in driving range: A meta-analysis. Transportation Research Part A: Policy and Practice, 55, 27–45.
European Comission. 2011. Energy Roadmap 2050. Impact assessment and scenario analysis. https://ec.europa.eu/energy/sites/ener/files/documents/roadmap2050_ia_20120430_en_0.pdf.
Glerum, A., Stankovikj, L., Thémans, M., & Bierlaire, M. (2014). Forecasting the demand for electric vehicles: Accounting for attitudes and perceptions. Transportation Science, 48(4), 483–499.
Hackbarth, A., & Madlener, R. (2013). Consumer preferences for alternative fuel vehicles: A discrete choice analysis. Transportation Research Part D: Transport and Environment, 25, 5–17.
Hackbarth, A., & Madlener, R. (2016). Willingness-to-pay for alternative fuel vehicle characteristics: A stated choice study for Germany. Transportation Research Part A: Policy and Practice, 85, 89–111.
Hess, S., Fowler, M., Adler, T., & Bahreinian, A. (2012). A joint model for vehicle type and fuel type choice: Evidence from a cross-nested logit study. Transportation, 39(3), 593–625.
Institut national de la statistique et des études économiques. (2016a). http://www.insee.fr/fr/themes/tableau.asp?reg_id=0&ref_id=NATTEF13629. Accessed on 20.11.2016.
Institut national de la statistique et des études économiques. (2016b). http://www.insee.fr/fr/themes/tableau.asp?reg_id=0&ref_id=NATTEF05160. Accessed on 20.11.2016.
Institut national de la statistique et des études économiques. (2016c). Prix moyens à la consommation en métropole - Utilisation de véhicules, biens et services de loisirs. http://www.bdm.insee.fr/bdm2/affichageSeries?idbank=000442588&idbank=000849411&bouton=OK&codeGroupe=169. Accessed on 21.11.2016.
Jensen, A. F., Cherchi, E., Mabit, S. L., & Ortúzar, J. D. D. (2017). Predicting the potential market for electric vehicles. Transportation Science, 51(2), 427–440.
Kim, J., Rasouli, S., & Timmermans, H. (2014). Expanding scope of hybrid choice models allowing for mixture of social influences and latent attitudes: Application to intended purchase of electric cars. Transportation Research Part A: Policy and Practice, 69, 71–85.
Lave, C. A., & Train, K. (1979). A disaggregate model of auto-type choice. Transportation Research Part A: General, 13(1), 1–9.
Mai, T., Frejinger, E., Fosgerau, M., & Bastin, F. (2015). June. A dynamic programming approach for quickly estimating large MEV models: Tech. rept.
Massiani, J. (2014). Stated preference surveys for electric and alternative fuel vehicles: Are we doing the right thing? Transportation Letters, 6(3), 152–160.
McCarthy, P. S., & Tay, R. S. (1998). New vehicle consumption and fuel efficiency: A nested logit approach. Transportation Research Part E: Logistics and Transportation Review, 34(1), 39–51.
McFadden, D., Train, K., et al. (2000). Mixed MNL models for discrete response. Journal of applied Econometrics, 15(5), 447–470.
Ministère de l’environnement, de l’énergie et de la mer. 2016. Bonus-Malus : définitions et barèmes pour 2016. http://www.developpement-durable.gouv.fr/Bonus-Malus-definitions-et-baremes.html. Accessed on 21.11.2016.
Mohammadian, A. (2002). Nested logit models and artificial neural networks for predicting household automobile choices: Comparison of performance. Transportation Research Record: Journal of the Transportation Research Board, 1807, 92–100.
Mohammadian, A., & Miller, E. (2003). Empirical investigation of household vehicle type choice decisions. Transportation Research Record: Journal of the Transportation Research Board, 1854, 99–106.
Page, M., Whelan, G., & Daly, A. (2000). Modelling the factors which influence new car purchasing. https://trid.trb.org/view.aspx?id=620795. Accessed 10 October 2017.
Potoglou, D. (2008). Vehicle-type choice and neighbourhood characteristics: An empirical study of Hamilton, Canada. Transportation Research Part D: Transport and Environment, 13(3), 177–186.
Rasouli, S., & Timmermans, H. (2016). Influence of social networks on latent choice of electric cars: A mixed logit specification using experimental design data. Networks and Spatial Economics, 16(1), 99–130.
Schafer, J. L. (2000). Analysis of incomplete multivariate data. 1. ed., 1. crc press reprint edn. Monographs on statistics and applied probability, no. 72. Boca Raton: Chapman & Hall/CRC. OCLC: 249266966.
Sud Ouest. (2015). Prix du gazole et de l’essence : ce qui va changer pour les automobilistes. http://www.sudouest.fr/2015/10/14/carburant-le-gouvernement-annonce-l-augmentation-de-la-taxe-sur-le-gazole-des-2016-2154678-4755.php. Accessed on 21.11.2016.
Train, K. (1980). The potential market for non-gasoline-powered automobiles. Transportation Research Part A: General, 14(5–6), 405–414.
Train, K. (1986). Qualitative choice analysis: Theory, econometrics, and an application to automobile demand, MIT Press series in transportation studies (Vol. 10). Cambridge, Mass: MIT Press.
Train, K. (2009). Discrete choice methods with simulation (2nd ed.). Cambridge: New York: Cambridge University Press.
Train, K. E., & Winston, C. (2007). Vehicle choice behavior and the declining market share of US automakers. International Economic Review, 48(4), 1469–1496.
U.S. Department of Energy. (2016). Energy Efficiency & Renewable Energy. http://www.fueleconomy.gov/feg/. Accessed on 21.11.2016.
Wang, S., Fan, J., Zhao, D., Yang, S., & Fu, Y. (2016). Predicting consumers’ intention to adopt hybrid electric vehicles: Using an extended version of the theory of planned behavior model. Transportation, 43(1), 123–143.
Wu, G., Yamamoto, T., & Kitamura, R. (1999). Vehicle ownership model that incorporates the causal structure underlying attitudes toward vehicle ownership. Transportation Research Record: Journal of the Transportation Research Board, 1676, 61–67.