Modeling power and energy of the task-parallel Cholesky factorization on multicore processors

Computer Science - Research and Development - Tập 29 - Trang 105-112 - 2012
Pedro Alonso1, Manuel F. Dolz2, Rafael Mayo2, Enrique S. Quintana-Ortí2
1Depto. de Sistemas Informáticos y Computación, Univ. Politècnica de València, Valencia, Spain
2Depto. de Ingeniería y Ciencia de Computadores, Univ. Jaume I, Castellón, Spain

Tóm tắt

In this paper we introduce a model for the total energy consumption of the Cholesky factorization on a multicore processor. Our model assumes a task-parallel execution of the factorization process, with concurrency leveraged via a run-time as those recently proposed in projects like SMPSs, PLASMA or libflame, and decomposes the power usage into its system, static and dynamic components. A few simple experiments provide experimental data (parameters) with enough accuracy to assemble the model, which can then be used to estimate the actual power dissipation and energy consumption of the global algorithm. Experimental results on an 8-core platform equipped with Intel Xeon processors reveal the precision of the model.

Tài liệu tham khảo

The green500 list (2010). Available at http://www.green500.org Aliaga JI, Bollhoefer M, Martín A, Quintana-Ortí ES (2011) Exploiting thread-level parallelism in the iterative solution of sparse linear systems. Parallel Comput 37(3):183–202. doi:10.1016/j.parco.2010.11.002 AnandTech Forums: Power-consumption scaling with clockspeed and Vcc for the i7-2600K (2011). http://forums.anandtech.com/showthread.php?t=2195927 Badia RM, Herrero JR, Labarta J, Pérez JM, Quintana-Ortí ES, Quintana-Ortí G (2009) Parallelizing dense and banded linear algebra libraries using SMPSs. Concurr Comput, Pract Exp 21:2438–2456 Badia RM, Herrero JR, Labarta J, Pérez JM, Quintana-Ortí ES, Quintana-Ortí G (2009) Parallelizing dense and banded linear algebra libraries using SMPSs. Concurr Comput, Pract Exp 21(18):2438–2456 Borkar S, Chien AA (2011) The future of microprocessors. Commun ACM 54(5):67–77 Buttari A, Langou J, Kurzak J, Dongarra J (2009) A class of parallel tiled linear algebra algorithms for multicore architectures. Parallel Comput 35(1):38–53 Cilk project home page. http://supertech.csail.mit.edu/cilk/ Dongarra J et al. (2011) The international ExaScale software project roadmap. Int J High Perform Comput Appl 25(1):3–60. doi:10.1177/1094342010391989 Duranton M et al (2010) The HiPEAC vision. Available from http://www.hipeac.net/roadmap Esmaeilzadeh H, Blem E, St Amant R, Sankaralingam K, Burger D (2011) Dark silicon and the end of multicore scaling. In: Proc 38th annual int symp computer architecture, ISCA’11, pp 365–376 Feng W, Feng X, Ce R (2008) Green supercomputing comes of age. IT Prof 10(1):17–23 FLAME project home page. http://www.cs.utexas.edu/users/flame/ Golub GH, Loan CFV (1996) Matrix computations, 3rd edn. Johns Hopkins University Press, Baltimore Paraver: the flexible analysis tool. http://www.cepba.upc.es/paraver PLASMA project home page. http://icl.cs.utk.edu/plasma/ Quintana-Ortí G, Quintana-Ortí ES, van de Geijn RA, Zee FGV, Chan E (2009) Programming matrix algorithms-by-blocks for thread-level parallelism. ACM Trans Math Softw 36(3):14:1–14:26 SMP superscalar project home page. http://www.bsc.es/plantillaG.php?cat_id=385