Mô hình hóa độ dẫn nhiệt và điện bằng cách sử dụng một continuum Cosserat đàn hồi nhớt

Continuum Mechanics and Thermodynamics - Tập 34 - Trang 555-586 - 2022
Elena A. Ivanova1,2
1Higher School of Theoretical Mechanics, Peter the Great St. Petersburg Polytechnic University, Saint-Petersburg, Russia
2Institute for Problems in Mechanical Engineering of Russian Academy of Sciences, Saint-Petersburg, Russia

Tóm tắt

Chúng tôi xem xét một lý thuyết tuyến tính về một continuum Cosserat đàn hồi nhớt của một loại đặc biệt. Trong quá trình này, chúng tôi liên kết các biến chính đặc trưng cho trạng thái ứng suất-biến dạng của continuum với các đại lượng đặc trưng cho các quá trình điện động lực học và nhiệt. Khi xem xét các tương tự được đề xuất, chúng tôi diễn giải các phương trình mô tả continuum như là các phương trình của nhiệt động lực học và điện động lực học. Chúng tôi xác định các tham số của mô hình bằng cách so sánh các phương trình đạt được với các phương trình Maxwell và phương trình dẫn nhiệt hyperbolic. Kết quả là, chúng tôi có được hai phương trình telegrapher ba chiều: một cho nhiệt độ và một cho vectơ trường điện. Những phương trình này là mới. Chúng mô tả các quá trình điện từ và nhiệt, cũng như cách mà chúng ảnh hưởng lẫn nhau một cách chính xác hơn so với lý thuyết cổ điển. Cụ thể, những phương trình telegrapher này tính đến không chỉ hiệu ứng bề mặt được mô tả trong nhiều nguồn tài liệu về điện động lực học, mà còn cả các hiệu ứng dạng bề mặt tĩnh được quan sát trong một số thí nghiệm. Khác với điện động lực học cổ điển, mà chỉ có hai vectơ vuông góc lẫn nhau: vectơ trường điện và vectơ cảm ứng từ, lý thuyết được đề xuất chứa ba vectơ vuông góc lẫn nhau: vectơ trường điện, vectơ cảm ứng từ và gradient nhiệt độ. Nó đồng nhất với các sự kiện thực nghiệm được phát hiện bởi Ettingshausen và Nernst (hiệu ứng Ettingshausen và hiệu ứng Nernst–Ettingshausen). Nếu bỏ qua thành phần nhiệt, lý thuyết được đề xuất giảm thành hệ phương trình, mà là một tổng quát hóa các phương trình Maxwell. Hệ phương trình này là mới mẻ. Nó là một tương đương ba chiều của các định luật Kirchhoff cho các mạch điện, trong khi các phương trình Maxwell thì không.

Từ khóa

#continuum Cosserat #ứng suất-biến dạng #điện động lực học #nhiệt động lực học #hiệu ứng bề mặt #phương trình telegrapher #điện từ #nhiệt độ

Tài liệu tham khảo

Whittaker, E.: A History of the Theories of Aether and Electricity. The Classical Theories. Thomas Nelson and Sons Ltd, London (1910) Crandall, S., Karnopp, D.C., Kurtz, E.F., Jr., Pridmore-Brown, D.C.: Dynamics of Mechanical and Electromechanical Systems. McGraw-Hill, New York (1968) Kron, G.: Equivalent circuits of the elastic field. ASME. J. Appl. Mech. 11(3), A149–A161 (1944) Kron, G.: Equivalent circuits of compressible and incompressible fluid flow fields. J. Aeronaut. Sci. 12(2), 221–231 (1945) Kron, G.: Electric circuit models of the Schrödinger equation. Phys. Rev. 67, 39–43 (1945) Kron, G.: Numerical solution of ordinary and partial differential equations by means of equivalent circuits. J. Appl. Phys. 16(3), 172–186 (1945) Silvio, A., Dell’Isola, F., Porfiri, M.: A revival of electric analogs for vibrating mechanical systems aimed to their efficient control by PZT actuators. Int. J. Solids Struct. 39(20), 5295–5324 (2002) Ugo, A., Dell’Isola, F., Porfiri, M.: Piezoelectric passive distributed controllers for beam flexural vibrations. J. Vib. Control 10(5), 625–659 (2004) Darleux, R., Lossouarn, B., Giorgio, I., dell’Isola, F., Deü, J.F.: Electrical analogs of curved beams and application to piezoelectric network damping. Math. Mech. Solids. (2021). https://doi.org/10.1177/10812865211027622 Siegel, D.M.: Innovation in Maxwell’s Electromagnetic Theory: Molecular Vortices, Displacement Current, and Light. Cambrige University Press, New York (1991) Darrigol, O.: Electrodynamics from Ampère to Einstein. Oxford University Press, New York (2000) Chalmers, A.: Maxwell, mechanism, and the nature of electricity. Phys. Perspect. 3, 425–438 (2001) Capria, M.M. (ed.): Physics Before and After Einstein. IOS Press, Amsterdam (2005) Silva, C.C.: The role of models and analogies in the electromagnetic theory: a historical case study. Sci. Educ. 16, 835–848 (2007) Pietsch, W.: Hidden underdetermination: a case study in classical electrodynamics. Int. Stud. Philos. Sci. 26(2), 125–151 (2012) Longair, M.: ‘... a paper ... I hold to be great guns’: a commentary on Maxwell (1865) ‘A dynamical theory of the electromagnetic field’. Philos. Trans. R. Soc. A 373, 20140473 (2015) Jaswon, M.A.: Mechanical interpretation of Maxwell’s equations. Nature 224, 1303–1304 (1969) Müller, W.H., Rickert, W., Vilchevskaya, E.N.: Thence the moment of momentum. Z. Angew. Math. Mech. 100(5), e202000117 (2020) Kelly, E.M.: Vacuum electromagnetics derived exclusively from the properties of an ideal fluid. Nuovo Cim B 32(1), 117–137 (1976) Zhilin, P.A.: Reality and mechanics. In: Proceedings of XXIII Summer School “Nonlinear Oscillations in Mechanical Systems”, St. Petersburg, Russia, pp. 6–49 (1996) (in Russian) Zhilin, P.A.: Classical and modified electrodynamics. In: Proceedings of International Conference “New Ideas in Natural Sciences”, St. Petersburg. Russia. Part I—Physics, pp. 73–82 (1996) Zhilin, P.A.: Advanced Problems in Mechanics, vol. 1. Institute for Problems in Mechanical Engineering, St. Petersburg (2006) (in Russian) Zhilin, P.A.: Advanced Problems in Mechanics, vol. 2. Institute for Problems in Mechanical Engineering, St. Petersburg (2006) Larson, D.J.: A derivation of Maxwell’s equations from a simple two-component solid-mechanical aether. Phys. Essays. 11(4), 524–530 (1998) Zareski, D.: The elastic interpretation of electrodynamics. Found. Phys. Lett. 14, 447–469 (2001) Dmitriyev, V.P.: Electrodynamics and elasticity. Am. J. Phys. 71(9), 952–953 (2003) Dmitriyev, V.P.: Mechanical model of the Lorentz force and Coulomb interaction. Cent. Eur. J. Phys. 6(3), 711–716 (2008) Christov, C.I.: Maxwell–Lorentz electrodynamics as a manifestation of the dynamics of a viscoelastic metacontinuum. Math. Comput. Simul. 74(2–3), 93–104 (2007) Christov, C.I.: On the nonlinear continuum mechanics of space and the notion of luminiferous medium. Nonlinear Anal. 71, e2028–e2044 (2009) Christov, C.I.: The concept of a quasi-particle and the non-probabilistic interpretation of wave mechanics. Math. Comput. Simul. 80(1), 91–101 (2009) Christov, C.I.: Frame indifferent formulation of Maxwell’s elastic-fluid model and the rational continuum mechanics of the electromagnetic field. Mech. Res. Commun. 38(4), 334–339 (2011) Wang, X.S.: Derivation of Maxwell’s equations based on a continuum mechanical model of vacuum and a singularity model of electric charges. Prog. Phys. 2, 111–120 (2008) Lin, T.-W., Lin, H.: Newton’s laws of motion based substantial aether theory for electro-magnetic wave. J. Mech. 30(4), 435–442 (2014) Dixon, R.C., Eringen, A.C.: A dynamical theory of polar elastic dielectrics—I. Int. J. Eng. Sci. 2, 359–377 (1964) Dixon, R.C., Eringen, A.C.: A dynamical theory of polar elastic dielectrics—II. Int. J. Eng. Sci. 3, 379–398 (1965) Treugolov, I.G.: Moment theory of electromagnetic effects in anisotropic solids. Appl. Math. Mech. 53(6), 992–997 (1989) Grekova, E., Zhilin, P.: Basic equations of Kelvin’s medium and analogy with ferromagnets. J. Elast. 64, 29–70 (2001) Grekova, E.F.: Ferromagnets and Kelvin’s medium: basic equations and wave processes. J. Comput. Acoust. 9(2), 427–446 (2001) Ivanova, E.A., Krivtsov, A.M., Zhilin, P.A.: Description of rotational molecular spectra by means of an approach based on rational mechanics. ZAMM. Z. Angew. Math. Mech. 87(2), 139–149 (2007) Ivanova, E.A., Kolpakov, Ya.E.: Piezoeffect in polar materials using moment theory. J. Appl. Mech. Tech. Phys. 54(6), 989–1002 (2013) Ivanova, E.A., Kolpakov, Ya.E.: A description of piezoelectric effect in non-polar materials taking into account the quadrupole moments. Z. Angew. Math. Mech. 96(9), 1033–1048 (2016) Tiersten, H.F.: Coupled magnetomechanical equations for magnetically saturated insulators. J. Math. Phys. 5(9), 1298–1318 (1964) Maugin, G.A.: Continuum Mechanics of Electromagnetic Solids. Elsevier Science Publishers, Oxford (1988) Eringen, A.C., Maugin, G.A.: Electrodynamics of Continua. Springer, New York (1990) Fomethe, A., Maugin, G.A.: Material forces in thermoelastic ferromagnets. Contin. Mech. Thermodyn. Issue 8, 275–292 (1996) Zhilin, P.A.: Rational Continuum Mechanics. Polytechnic University Publishing House, St. Petersburg (2012) (in Russian) Zhilin, P.A.: Construction of a model of an electromagnetic field from the standpoint of rational mechanics. RENSIT 5(1), 77–97 (2013) (in Russian) Altenbach, H., Indeitsev, D., Ivanova, E., Krvitsov, A.: In memory of Pavel Andreevich Zhilin (1942–2005). ZAMM. Z. Angew. Math. Mech. 87(2), 79–80 (2007) Altenbach, H., Eremeyev, V., Indeitsev, D., Ivanova, E., Krvitsov, A.: On the contributions of Pavel Andreevich Zhilin to Mechanics. Tech. Mech. 29(2), 115–134 (2009) Altenbach, H., Ivanova, E.A.: Zhilin, Pavel Andreevich. In: Altenbach, H., Öchsner, A. (eds.) Encyclopedia of Continuum Mechanics. Springer, Berlin (2020) https://doi.org/10.1007/978-3-662-55771-6_147 Ivanova, E.A.: Derivation of theory of thermoviscoelasticity by means of two-component medium. Acta Mech. 215, 261–286 (2010) Ivanova, E.A.: On one model of generalized continuum and its thermodynamical interpretation. In: Altenbach, H., Maugin, G.A., Erofeev, V. (eds.) Mechanics of Generalized Continua, pp. 151–174. Springer, Berlin (2011) Ivanova, E.A.: Derivation of theory of thermoviscoelasticity by means of two-component Cosserat continuum. Tech. Mech. 32, 273–286 (2012) Ivanova, E.A.: Description of mechanism of thermal conduction and internal damping by means of two-component Cosserat continuum. Acta Mech. 225, 757–795 (2014) Ivanova, E.A.: Description of nonlinear thermal effects by means of a two-component Cosserat continuum. Acta Mech. 228, 2299–2346 (2017) Vitokhin, E.Y., Ivanova, E.A.: Dispersion relations for the hyperbolic thermal conductivity, thermoelasticity and thermoviscoelasticity. Contin. Mech. Thermodyn. 29, 1219–1240 (2017) Ivanova, E.A.: Thermal effects by means of two-component Cosserat continuum. In: Altenbach, H., Öchsner, A. (eds.) Encyclopedia of Continuum Mechanics. Springer, Berlin (2020). https://doi.org/10.1007/978-3-662-55771-6_66 Ivanova, E.A.: A new model of a micropolar continuum and some electromagnetic analogies. Acta Mech. 226, 697–721 (2015) Ivanova, E.A.: Modeling of electrodynamic processes by means of mechanical analogies. Z. Angew. Math. Mech. 101(4), e202000076 (2021) Ivanova, E.A.: On a micropolar continuum approach to some problems of thermo- and electrodynamics. Acta Mech. 230, 1685–1715 (2019) Ivanova, E.A.: Towards micropolar continuum theory describing some problems of thermo and electrodynamics. In: Altenbach, H., Irschik, H., Matveenko, V.P. (eds.) Contributions to Advanced Dynamics and Continuum Mechanics, pp. 111–129. Springer, Berlin (2019). https://doi.org/10.1007/978-3-030-21251-3_8 Ivanova, E.A., Matias, D.V.: Coupled problems in thermodynamics. In: Altenbach, H., Öchsner, A. (eds.) State of the Art and Future Trends in Material Modeling, pp. 151–172. Springer, Berlin (2019) Ivanova, E.A., Vilchevskaya, E.N., Müller, W.H.: Time derivatives in material and spatial description—what are the differences and why do they concern us? In: Naumenko, K., Aßmus, M. (eds.) Advanced Methods of Continuum Mechanics for Materials and Structures, pp. 3–28. Springer, Berlin (2016) Ivanova, E.A., Vilchevskaya, E.N., Müller, W.H.: A study of objective time derivatives in material and spatial description. In: Altenbach, H., Goldstein, R., Murashkin, E. (eds.) Mechanics for Materials and Technologies. Advanced Structured Materials, vol. 46, pp. 195–229. Springer, Cham (2017) Pohl, R.W.: Physical Principles of Electricity and Magnetism. Blackie, Glasgow (1930) Pohl, R.W.: Elektrizitätslehre. Springer, Berlin (1960) Feynman, R.P., Leighton, R.B., Sands, M.: The Feynman Lectures on Physics, vol. 2. Mainly Electromagnetism and Matter. Addison Wesley Publishing Company, London (1964) Abraham, M., Becker, R.: The Classical Theory of Electricity and Magnetism. Blackie & Son Limited, London (1932) Reitz, J.R., Milford, F.J.: Foundations of Electromagnetic Theory. Addison-Wesley Publishing Company, London (1960) Jackson, J.D.: Classical Electrodynamics. Wiley, New York (1962) Sommerfeld, A.: Electrodynamics. Lectures on Theoretical Physics, vol. 3. Academic Press, New York (1964) Sadiku, M.N.O.: Elements of Electrodynamics. Oxford University Press, New York (2014) Griffiths, D.J.: Introduction to Electrodynamics. Cambridge University Press, Cambridge (2017) Hayt, W.H., Buck, J.A.: Engineering Electromagnetics. McGraw-Hill, New York (2012) Steer, M.: Microwave and RF Design: A System Approach. SciTech Publishing, Raleigh, NC (2010) Pozar, D.M.: Microwave Engineering. Wiley, Hoboken (2011) Azbel, M.Y.: ”Static skin effect” for currents in a strong magnetic field and the resistance of metals. Sov. Phys. JETP 17(3), 667–677 (1963) Panchenko, O.A., Lutsishin, P.P.: Static skin effect in tungsten. J. Exp. Theor. Phys. 30(5), 841–844 (1969) Suzuki, M., Tanuma, S.: The static skin effect in bismuth. J. Phys. Soc. Jpn. 44(5), 1539–1546 (1978) Bogod, Y.A., Gitsu, D.V., Grozav, A.D.: Static skin effect and acoustoelectric instability in filamentous bismuth single crystals. Sov. Phys. JETP. 63(3), 589–595 (1986) Oyamada, K., Peschansky, V.G., Stepanenko, D.I.: Static skin effect at high current densities. Phys. B Condens. Matter. 165–166(Part 1), 277–278 (1990) Belikov, A.S., Korenistov, P.S., Marchenkov, V.V.: Bulk and surface conductivity of pure tungsten single crystals under static skin effect. Bull. Perm Univ. Ser. Phys. 41(3), 8–13 (2018) Chistyakov, V.V., Domozhirova, A.N., Huang, J.C.A., Marchenkov, V.V.: Thickness dependence of conductivity in \(Bi_2 Se_3\) topological insulator. J. Phys. Conf. Ser. 1389, 012051 (2019) Batdalov, A.B., Cherepanov, A.N., Startsev, V.E., Marchenkov, V.V.: Thermal analogue of the static skin effect in compensated metals in strong magnetic fields. Phys. Met. Metallogr. 75(6), 85–87 (1993) (in Russian) Batdalov, A.B., Abdulvagidov, S.B., Aliev, A.M.: Magnetothermo-EMF and Wiedemann–Franz law for tungsten single crystals under the conditions of static skin effect. Phys. Solid State 42, 1381–1386 (2000) Vovnenko, N.V., Zimin, B.A., Sud’enkov, Y.V.: Nonequilibrium motion of a metal surface exposed to submicrosecond laser pulses. Tech. Phys. 55, 953–957 (2010) Sud’enkov, Y.V., Pavlishin, A.I.: Nanosecond pressure pulses propagating at anomalously high velocities in metal foils. Tech. Phys. Lett. 29, 491–493 (2003) Szekeres, A., Fekete, B.: Continuum mechanics—heat conduction—cognition. Period. Polytech. Eng. Mech. Eng. 59(1), 8–15 (2015) Tzou, DaYu.: An engineering assessment to the relaxation time in thermal wave propagation. Int. J. Heat Mass Transf. 36(7), 1845–1851 (1993) Gembarovic, J., Majernik, V.: Non-Fourier propagation of heat pulses in finite medium. Int. J. Heat Mass Transf. 31(5), 1073–1080 (1988) Poletkin, K.V., Gurzadyan, G.G., Shang, J., Kulish, V.: Ultrafast heat transfer on nanoscale in thin gold films. Appl. Phys. B 107, 137–143 (2012) Ivanova, E.A., Jatar Montaño, L.E.: A new approach to solving the solid mechanics problems with matter supply. Contin. Mech. Thermodyn. (2021). https://doi.org/10.1007/s00161-021-01014-2 The nature of electric current (Discussion held in the Polytechnical Institute of Leningrad). Electricity. No 3, 127–138 (1930) (in Russian) The nature of electric current (2nd Discussion, held in the Polytechnical Institute of Leningrad, on January 3rd, 1930). Electricity. No 8, 337–350 (1930) (in Russian) The nature of electric current (3-rd Discussion, held in the Polytechnical Institute of Leningrad, on the 14-th of March 1930). Electricity. No 10, 425–435 (1930) (in Russian) Heaviside, O.: Electrical Papers, vol. I, pp. 440–441. Macmillan and Co., London (1892) Harmuth, H.F.: Correction of Maxwell’s equations for signals I. IEEE Trans. Electromagn. Compat. 28(4), 250–258 (1986) Jonsson, B.L.G., Gustafsson, M.: Stored energies in electric and magnetic current densities for small antennas. Proc. R. Soc. A 471, 20140897 (2015)